Nav: Home

New research could help to prevent blockages faced by many long-term catheter users

December 14, 2015

New research could lead to new treatments to prevent blockages and urinary tract infections experienced by many long-term catheter users.

Up to 50 percent of long-term catheter users experience encrustations and subsequent blockage, which result in severe trauma and pain for the individual and place high burdens on healthcare services and finances.

Using an imaging technique called episcopic differential interference contrast (EDIC) microscopy, researchers from the University of Southampton identified four clear stages to the development of a crystalline biofilm, which leads to encrustations.

The research also provided new insights into the role of the Proteus mirabilis (P. mirabilis) bacterium that causes the biofilm to form.

Dr Sandra Wilks, Senior Research Fellow in the University's Centre for Biological Science and lead author of the study, said: "This has greatly enhanced our understanding of the components and stages involved in the formation of crystalline biofilms and encrustations. It provides important information, which will aid in the development of anti-biofilm materials and treatments to manage and ultimately prevent blockage, improving the quality of life of many long-term catheter users."

The Southampton team used EDIC microscopy to study the development of the crystalline biofilm over a 24-day period on two common catheter materials -- silicone and hydrogel latex.

They found four distinct stages: (1) an initial foundation layer formed by individual 'colonising' P. mirabilis cells, which occurred in less than one hour; (2) this was rapidly followed by a sheet-like microcrystalline material that covers this conditioning film from which; (3) after 24-hour exposure, large amounts of crystalline material extends out and; (4) within four days the entire surface (of both catheter materials) was covered with a crystalline biofilm, in which P. mirabilis was embedded throughout this structure.

The results showed that the biofilm occured equally on silicone and hydrogel latex and that the two materials had no effect on the time progression of development.

Dr Wilks said: "In order to find ways to control and prevent catheter blockages, it is essential that we have a full understanding of biofilm formation. The observations made in this work advance our understanding when placed in the context of previous studies. When considering the various stages, it is clear that if primary attachment and development of a conditioning film can be prevented the subsequent formation of encrustations could have reduced impact."

The study is being presented at the official launch of the University's Network on Antimicrobial Resistance and Infection Prevention (NAMRIP) today (14 December). Professor Dame Sally Davies, the Chief Medical Officer for England, will be the keynote speaker at the event, which will highlight the University's world-class interdisciplinary research to address the global challenge of Antimicrobial resistance.

The new findings, published in the journal PLoS ONE, challenge traditional theories and previous findings and add further important information.

Dr Wilks added: "The use of EDIC microscopy provides a rapid and effective method for visualising crystalline biofilm development directly on catheters, offering considerable improvement over previous imaging techniques.

"Previous studies also suggest that the biofilm layer primarily forms around the eye hole area of the catheter, whereas our work shows they form anywhere on the catheter surface. We also demonstrated that the colonising P. mirabilis cells attached themselves to the catheter surface prior to the formation of the conditioning film, which hadn't previously been observed."
-end-
The study was funded by a Knowledge Mobilisation Fellowship in Healthcare Technologies from the University's Institute for Life Sciences, a leader in life sciences research, development and innovation.

University of Southampton

Related Microscopy Articles:

A pigment from ancient Egypt to modern microscopy
Egyptian blue is one of the oldest manmade colour pigments.
X-ray microscopy at BESSY II: Nanoparticles can change cells
Nanoparticles easily enter into cells. New insights about how they are distributed and what they do there are shown for the first time by high-resolution 3D microscopy images from BESSY II.
Microscopy technique reveals cells' 3D ultrastructure in new detail
The method melds the best of super-resolution fluorescence and electron microscopy to show how proteins relate to cells' ultrastructure.
Ghost imaging speeds up super-resolution microscopy
Researchers have used advanced imaging approaches to achieve super-resolution microscopy at unprecedented speeds.
HD microscopy in milliseconds
They can make tiny cell structures visible: cutting-edge light microscopes offer resolutions of a few tenths of a nanometre--in other words, a millionth of a millimeter.
Researchers develop new interferometric single-molecule localization microscopy
Prof. XU Tao and Prof. JI Wei from Institute of Biophysics of the Chinese Academy of Sciences developed a new interferometric single molecule localization microscopy with fast modulated structured illumination which named Repetitive Optical Selective Exposure (ROSE).
Computational approach speeds up advanced microscopy imaging
Researchers have developed a way to enhance the imaging speed of two-photon microscopy up to 5 times without compromising resolution.
Engineers revolutionize molecular microscopy
Engineers of the University of Magdeburg have developed a method for measuring the electrical potentials of molecules and molecular surfaces with previously unattainable precision and speed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
'DNA microscopy' offers entirely new way to image cells
Rather than relying on optics, the microscopy system offers a chemically encoded way to map biomolecules' relative positions.
More Microscopy News and Microscopy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.