New research could help to prevent blockages faced by many long-term catheter users

December 14, 2015

New research could lead to new treatments to prevent blockages and urinary tract infections experienced by many long-term catheter users.

Up to 50 percent of long-term catheter users experience encrustations and subsequent blockage, which result in severe trauma and pain for the individual and place high burdens on healthcare services and finances.

Using an imaging technique called episcopic differential interference contrast (EDIC) microscopy, researchers from the University of Southampton identified four clear stages to the development of a crystalline biofilm, which leads to encrustations.

The research also provided new insights into the role of the Proteus mirabilis (P. mirabilis) bacterium that causes the biofilm to form.

Dr Sandra Wilks, Senior Research Fellow in the University's Centre for Biological Science and lead author of the study, said: "This has greatly enhanced our understanding of the components and stages involved in the formation of crystalline biofilms and encrustations. It provides important information, which will aid in the development of anti-biofilm materials and treatments to manage and ultimately prevent blockage, improving the quality of life of many long-term catheter users."

The Southampton team used EDIC microscopy to study the development of the crystalline biofilm over a 24-day period on two common catheter materials -- silicone and hydrogel latex.

They found four distinct stages: (1) an initial foundation layer formed by individual 'colonising' P. mirabilis cells, which occurred in less than one hour; (2) this was rapidly followed by a sheet-like microcrystalline material that covers this conditioning film from which; (3) after 24-hour exposure, large amounts of crystalline material extends out and; (4) within four days the entire surface (of both catheter materials) was covered with a crystalline biofilm, in which P. mirabilis was embedded throughout this structure.

The results showed that the biofilm occured equally on silicone and hydrogel latex and that the two materials had no effect on the time progression of development.

Dr Wilks said: "In order to find ways to control and prevent catheter blockages, it is essential that we have a full understanding of biofilm formation. The observations made in this work advance our understanding when placed in the context of previous studies. When considering the various stages, it is clear that if primary attachment and development of a conditioning film can be prevented the subsequent formation of encrustations could have reduced impact."

The study is being presented at the official launch of the University's Network on Antimicrobial Resistance and Infection Prevention (NAMRIP) today (14 December). Professor Dame Sally Davies, the Chief Medical Officer for England, will be the keynote speaker at the event, which will highlight the University's world-class interdisciplinary research to address the global challenge of Antimicrobial resistance.

The new findings, published in the journal PLoS ONE, challenge traditional theories and previous findings and add further important information.

Dr Wilks added: "The use of EDIC microscopy provides a rapid and effective method for visualising crystalline biofilm development directly on catheters, offering considerable improvement over previous imaging techniques.

"Previous studies also suggest that the biofilm layer primarily forms around the eye hole area of the catheter, whereas our work shows they form anywhere on the catheter surface. We also demonstrated that the colonising P. mirabilis cells attached themselves to the catheter surface prior to the formation of the conditioning film, which hadn't previously been observed."
-end-
The study was funded by a Knowledge Mobilisation Fellowship in Healthcare Technologies from the University's Institute for Life Sciences, a leader in life sciences research, development and innovation.

University of Southampton

Related Microscopy Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy News and Microscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.