Nav: Home

New method of diagnosing deadly fungal lung infection in leukemia patients discovered

December 14, 2015

A team of researchers have discovered a new way for early detection of a potentially deadly fungal infection in patients with suppressed immune systems such as those being treated for leukemia or have had an organ transplant.

A multidisciplinary research group led by Allan Brasier of The University of Texas Medical Branch at Galveston, in tandem with several collaborating research institutions and the Aspergillosis Technology Consortium, published their findings in PLOS ONE.

Patients receiving leukemia chemotherapy treatments, bone marrow stem cell transplants or lung transplants are some of those at risk for serious infection by the disease-causing Aspergillus fungus, a common mold in the environment that easily becomes airborne. When inhaled, the mold colonizes the respiratory tract. In patients with immune suppression from their chemotherapy treatment, the mold invades into the bloodstream where it spreads and infects several organs including the liver, lungs and brain. People with normal immune systems are able to destroy the inhaled mold without becoming infected.

Despite close monitoring for infection and aggressive anti-fungal therapy in vulnerable people, the fatality rates are as high as 50 to 90 percent depending on a patient's underlying disease and site of infection. While early diagnosis can improve the patient's outcome, timely detection of the infection is difficult.

Currently, the infection is diagnosed with X-rays and tests that measure levels of fungal molecules that produce an immune reaction in a patient's blood. These tests are not very accurate and often can lead to a wrong diagnosis.

The study describes how the team studied patients undergoing chemotherapy for leukemia, bone marrow transplants and lung transplants from several of the collaborating institutions and identified, confirmed and evaluated a new method of detecting the infectious mold in patients with leukemia. Similar people with no health conditions participated in the study as a comparison group.

The test results for the mold were different for each group of patients, so future commercial diagnostic tests using this technology should be tailored for different medical conditions commonly linked with this infection.

Brasier, director of UTMB's Institute for Translational Sciences, said the breakthrough was "an example of successful collaboration that brought together experts in several different scientific fields to approach a difficult problem." The team's discovery could translate to refined diagnostics, earlier treatment and improved survival for patients affected by this infection. More studies will be needed to confirm and validate this panel as a diagnostic test in independent patients.
-end-
Other authors of this study include UTMB's Yingxin Zhao, Heidi Spratt, John Wiktorowicz, Hyunsu Ju, Susan Stafford, Zheng Wu and Kizhake Soman; L. Joseph Wheat from MiraVista Laboratories; Lindsey Baden and Nicolas Issa from Harvard University; Angela Caliendo from Alpert Medical School of Brown University; David Denning from the University of Manchester; Cornelius Clancy from the University of Pittsburgh; M. Hong Nguyen, Michele Sugrue and John Wingard from the University of Florida and Barbara Alexander form the Duke University Medical Center.

University of Texas Medical Branch at Galveston

Related Leukemia Articles:

Vitamin B6, leukemia's deadly addiction
Researchers from CSHL and Memorial Sloan Kettering Cancer Center have discovered how Acute Myeloid Leukemia is addicted to vitamin B6.
Artificial intelligence tracks down leukemia
Artificial intelligence can detect one of the most common forms of blood cancer - acute myeloid leukemia -- with high reliability.
Milestone reached in new leukemia drug
Using a chemical compound called YKL-05-099, a team of cancer researchers from CSHL and the Dana Farber Institute was able to target the Salt-Inducible Kinase 3 (SIK3) pathway and extend survival in mice with MLL leukemia.
The drug combination effective against bovine leukemia
Scientists have succeeded in reducing levels of the bovine leukemia virus (BLV) in cows with severe infections by combining an immune checkpoint inhibitor and an enzyme inhibitor.
Towards a safer treatment for leukemia
An international team of researchers at VIB-KU Leuven, Belgium, the UK Dementia Institute and the Children's Cancer Institute, Australia, have found a safer treatment for a specific type of leukemia.
Research paves way for new source for leukemia drug
Chemistry researchers have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.
An atlas of an aggressive leukemia
A team of researchers led by Bradley Bernstein at the Ludwig Center at Harvard has used single-cell technologies and machine learning to create a detailed 'atlas of cell states' for acute myeloid leukemia (AML) that could help improve treatment of the aggressive cancer.
Finding second hits to knock out leukemia
Targeted drugs are a cornerstone of personalized medicine, yet come with important drawbacks.
Understanding the emergence of leukemia
Acute T-cell lymphoblastic leukemia is a rare type of blood cancer that affects mostly children.
New treatment approach for leukemia
An international research team led by researchers from Vetmeduni Vienna have made an important discovery that could lead to a better understanding of lymphocytic leukemia.
More Leukemia News and Leukemia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.