Nav: Home

Predicting extinction -- with the help of a Yule tree

December 14, 2016

Montreal, December 14, 2016 -- At this time of year, the words "Yule tree" may conjure images of brightly decorated balsam firs. But for Lea Popovic, an associate professor of mathematics and statistics in the Faculty of Arts and Science, a Yule tree is actually an advanced way to describe evolution.

In a new study published in Mathematical Biology, Popovic and recent Concordia graduate Mariolys Rivas (PhD 14) show how the present-day distribution of physical traits across species can help explain how the evolutionary process unfolded over time.

They used a tree-shaped graph called the Yule tree, first developed in 1924 by G. U. Yule to map genealogical history.

Visualizing how species change

"The full history of the evolutionary process of a given species can be neatly described by a Yule tree," says Popovic.

"We extended Yule's model so that we would be able to track evolutionary processes that are dependent on specific phenotypes."

Reconstructing the evolutionary process has been a major challenge to scientists for decades because so much is unknown. And with increased planetary changes resulting in growing numbers of extinctions, these questions are even more pressing.

"The evolution of the visible traits of species -- their phenotypes -- is responsible for the diversity of all living organisms and for their ability to adapt to new environments," says Popovic.

"Recent research has shown how differences in phenotypes can affect how quickly species evolve or become extinct. Mathematical models can go a long way in helping us determine various elements of this process. But the possibility that diversification may be trait dependent implies that standard methods are not adequate for measuring the rates of evolution."

To address these concerns, Popovic and Rivas used math to map the rate at which new species are created or become extinct. They developed a new mathematical model that describes evolution as a process in which the length of time that species live until they go extinct -- or give rise to other species -- depends on their phenotype. Their model includes the possibility for the phenotype of the new species to change.

The Yule tree graph

The Yule tree is a graph with one edge coming in and two edges coming out of each branch-point. The branches represent the time periods between the evolution of new species. If the branch leads to a branch-point, it means a new species evolved. If the branch leads to a leaf, it marks an extinction. The leaves represent the species present today.

The graph also features "cherries," which represent two present species that are the closest to each other in evolutionary terms, and "pendants," which represent the evolutionary connection to another species that is slightly further from them in evolutionary terms.

Counting the number of different types of cherries and pendants helps determine the particular dependence on the phenotype of new species being created or going extinct.
-end-
Related links:

"Topology and inference for Yule trees with multiple states" (cited study)

Department of Mathematics and Statistics

Lea Popovic

Mariolys Rivas

Media contact:
Cléa Desjardins
Senior advisor, media relations
University Communications Services
Concordia University
Phone: 514-848-2424, ext. 5068
Email: clea.desjardins@concordia.ca
Web: http://www.concordia.ca/now/media-relations
Twitter: @CleaDesjardins

Concordia University

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.