Nav: Home

A hardware-based modeling approach for real world collaborative multi-robot tasks

December 14, 2016

Technological revolution means robots no longer are the song of the future. The Governor of the Bank of England predicts today that up to half of British workforce face redundancy in the imminent 'second machine age'. No wonder, the research of multi-robot systems generates serious buzz both for promising (albeit at times scary) results and for their application prospects in the real world.

According to a leading American roboticist Ken Goldberg, people are fascinated with robots because robots reflect people. And hardly anything defines humans better indeed than their ability to communicate. Recent progress in programming, language processing and machine learning allows robot to display more and more complex communication abilities. Underlying these advances are solutions to significant problems of different origins, including mechanical design, sensing technologies, maintenance and power sources. With improved efficiency and the elimination of a single point of failure, multiple robots outperform single robots in domains that require greater capability and knowledge and can duly interact with each other, sharing information and executing tasks.

But how the multi-robot system is supposed to handle increasingly complex and precise tasks? One fairly obvious answer to this question lies within the implementation of an innovative algorithm, which would expand communicational capabilities for multi-robot collaborative task. For the system to work, it needs to be less prone to error, fast, and reliable comparing to the any other, including, human approaches.

A ground-breaking research conducted by the Moscow Power Engineering Institute, just published in Paladyn, Journal of Behavioral Robotics, reveals new findings in the emerging field of a multi-robot cooperative system design from its experimental side. In the article, - Vladimir Alexandrov, Konstantin Kirik and Alexander Kobrin propose the implementation of a hardware-based modeling system for multi-robot collaborative tasks focusing on the development and implementation phase of an algorithm/system creation. Their approach results in speeding up implementation iterations, ultimately leading to enhanced communicational capabilities of research objects. The Muscovite researchers concentrate not only on architecture and implementation of the research robot, but also on communication system with parallel radio and infrared bidirectional data exchange, and on strategies of implementation of simulation toolchain.

Due to significant progress made in the development of general problems concerning single-robot control and basic multi-robot behavior, many researchers shifted their focus to a study of multi-robot coordination and deep cooperation behavior. Robots themselves shall be capable to perform all necessary algorithmic steps. Therefore, using tightly coupled modelling hardware and simulation toolchain, that transfers the full implementation of algorithms onto the hardware, can bring certain benefits. "The new methods are attractive, as they integrate different new ideas concerning the algorithm design process, event-driven robot software design, and an autonomous mobile research robot equipped with an advanced sensor subsystem", says Professor Radu-Emil Precup, a specialist in development of new control systems and algorithms.

The original article is available fully in open access to read, download and share on De Gruyter Online.
-end-


De Gruyter Open

Related Robots Articles:

Robots popular with older adults
A new study by psychologists from the University of Jena (Germany) does not confirm that robot skepticism among elder people is often suspected in science.
Showing robots how to do your chores
By observing humans, robots learn to perform complex tasks, such as setting a table.
Designing better nursing care with robots
Robots are becoming an increasingly important part of human care, according to researchers based in Japan.
Darn you, R2! When can we blame robots?
A recent study finds that people are likely to blame robots for workplace accidents, but only if they believe the robots are autonomous.
Robots need a new philosophy to get a grip
Robots need to know the reason why they are doing a job if they are to effectively and safely work alongside people in the near future.
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Soft robots for all
Each year, soft robots gain new abilities. They can jump, squirm, and grip.
The robots that dementia caregivers want: robots for joy, robots for sorrow
A team of scientists spent six months co-designing robots with informal caregivers for people with dementia, such as family members.
Faster robots demoralize co-workers
A Cornell University-led team has found that when robots are beating humans in contests for cash prizes, people consider themselves less competent and expend slightly less effort -- and they tend to dislike the robots.
Increasing skepticism against robots
In Europe, people are more reserved regarding robots than they were five years ago.
More Robots News and Robots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.