Nav: Home

Nanocubes simplify printing and imaging in color and infrared

December 14, 2016

DURHAM, N.C. - Duke University researchers believe they have overcome a longstanding hurdle to producing cheaper, more robust ways to print and image across a range of colors extending into the infrared.

As any mantis shrimp will tell you, there are a wide range of "colors" along the electromagnetic spectrum that humans cannot see but which provide a wealth of information. Sensors that extend into the infrared can, for example, identify thousands of plants and minerals, diagnose cancerous melanomas and predict weather patterns, simply by the spectrum of light they reflect.

Current imaging technologies that can detect infrared wavelengths are expensive and bulky, requiring numerous filters or complex assemblies in front of an infrared photodetector. The need for mechanical movement in such devices reduces their expected lifetime and can be a liability in harsh conditions, such as those experienced by satellites.

In a new paper, a team of Duke engineers reveals a manufacturing technique that promises to bring a simplified form of multispectral imaging into daily use. Because the process uses existing materials and fabrication techniques that are inexpensive and easily scalable, it could revolutionize any industry where multispectral imaging or printing is used.

The results appear online December 14 in the journal Advanced Materials.

"It's challenging to create sensors that can detect both the visible spectrum and the infrared," said Maiken Mikkelsen, the Nortel Networks Assistant Professor of Electrical and Computer Engineering and Physics at Duke.

"Traditionally you need different materials that absorb different wavelengths, and that gets very expensive," Mikkelsen said. "But with our technology, the detectors' responses are based on structural properties that we design rather than a material's natural properties. What's really exciting is that we can pair this with a photodetector scheme to combine imaging in both the visible spectrum and the infrared on a single chip."

The new technology relies on plasmonics -- the use of nanoscale physical phenomena to trap certain frequencies of light.

Engineers fashion silver cubes just 100 nanometers wide and place them only a few nanometers above a thin gold foil. When incoming light strikes the surface of a nanocube, it excites the silver's electrons, trapping the light's energy -- but only at a certain frequency.

The size of the silver nanocubes and their distance from the base layer of gold determines that frequency, while controlling the spacing between the nanoparticles allows tuning the strength of the absorption. By precisely tailoring these spacings, researchers can make the system respond to any specific color they want, all the way from visible wavelengths out to the infrared.

The challenge facing the engineers is how to build a useful device that could be scalable and inexpensive enough to use in the real world. For that, Mikkelsen turned to her research team, including graduate student Jon Stewart.

"Similar types of materials have been demonstrated before, but they've all used expensive techniques that have kept the technology from transitioning to the market," said Stewart. "We've come up with a fabrication scheme that is scalable, doesn't need a clean room and avoids using million-dollar machines, all while achieving higher frequency sensitivities. It has allowed us to do things in the field that haven't been done before."

To build a detector, Mikkelsen and Stewart used a process of light etching and adhesives to pattern the nanocubes into pixels containing different sizes of silver nanocubes, and thus each sensitive to a specific wavelength of light. When incoming light strikes the array, each area responds differently depending on the wavelength of light it is sensitive to. By teasing out how each part of the array responds, a computer can reconstruct what color the original light was.

The technique can be used for printing as well, the team showed. Instead of creating pixels with six sections tuned to respond to specific colors, they created pixels with three bars that reflect three colors: blue, green and red. By controlling the relative lengths of each bar, they can dictate what combination of colors the pixel reflects. It's a novel take on the classic RGB scheme first used in photography in 1861.

But unlike most other applications, the plasmonic color scheme promises to never fade over time and can be reliably reproduced with tight accuracy time and again. It also allows its adopters to create color schemes in the infrared.

"Again, the exciting part is being able to print in both visible and infrared on the same substrate," said Mikkelsen. "You could imagine printing an image with a hidden portion in the infrared, or even covering an entire object to tailor its spectral response."
-end-
This work was supported by the Air Force Office of Scientific Research Young Investigator Research Program (AFOSR, Grant. No. FA9550-15-1-0301).

CITATION: Jon W. Stewart, Gleb M. Akselrod, David R. Smith & Maiken H. Mikkelsen, "Toward Multispectral Imaging with Colloidal Metasurface Pixels", Advanced Materials, 2016. DOI: 10.1002/adma.201602971

Duke University

Related Technology Articles:

How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
New technology for powder metallurgy
Tecnalia leads EFFIPRO (Energy EFFIcient PROcess of Engineering Materials) project, which shows a new manufacturing process using powder metallurgy.
New milestone in printed photovoltaic technology
A team of researchers at Friedrich-Alexander-Universität have achieved an important milestone in the quest to develop efficient solar technology as an alternative to fossil fuels.
Gene Drive Technology: Where is the future?
For this episode of BioScience Talks, we're joined by Gene Drive Committee co-chair James P.
Could Hollywood technology help your health?
The same technology used by the entertainment industry to animate characters such as Gollum in 'The Lord of The Rings' films, will be used to help train elite athletes, for medical diagnosis and even to help improve prosthetic limb development, in a new research center at the University of Bath launched today.
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.
New technology for dynamic projection mapping
It has been thought technically difficult to achieve projection mapping onto a moving/rotating object so that images look as though they are fixed to the object.

Related Technology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".