Nav: Home

Corn yield modeling towards sustainable agriculture

December 14, 2016

With an innovative modeling approach, researchers set out to examine corn and soybean yields and optimal nitrogen (N) fertilizer rates. In their study, recently published in Frontiers in Plant Science, they uses a 16-year long-term dataset from central Iowa, USA, with a state-of-the-art simulator that modeled corn and soybean yields, improving predictions of optimal N fertilizer rates for corn. This has global relevance for food security and sustainable agricultural practices in light of future climate change scenarios.

Corn, also known as maize, is one of the top three staple crops farmed globally with global production predicted to rise from 720.8 million tons in 2015 to 872.9 by 2030, according to the Food and Agriculture Organization. Corn also requires large nutrient supplements in the form of fertilizer due to its fast-growing, nitrogen hungry characteristics. And global demand is growing. "A huge challenge in agriculture is predicting the optimal N fertilizer rates which, if fine-tuned, can reduce N losses and increase profits", explains Laila Puntel, a graduate student and research assistant in Crop Production and Physiology at Iowa State University, USA, and lead author of the study. The ultimate goal is accurately predicting the economic optimum nitrogen rate (EONR), the amount of nitrogen fertilizer that will provide the maximum economic return to nitrogen added. This is notoriously complex to calculate due to factors including the soil-plant-atmosphere system, uncertainty in weather and fluctuations in crop and fertilizer prices.

To solve this conundrum, many technologies and approaches have been developed to assess the state of agricultural land. These include real-time remote sensing, aerial imaging, soil mapping and nitrate testing, crop canopy sensing and measuring chlorophyll levels. Web applications have also been developed including digital soil and weather databases. However, no single technology can make predictions of yield or optimal N fertilizer rates with the required accuracy or precision.

Puntel and her international co-authors tackled this problem head on, designing an inter-disciplinary approach using field and experimental data. These data were used to test the Agricultural Production Systems sIMulator (APSIM), an internationally recognized highly advanced simulator of agricultural systems.

"We found that long-term experimental data incorporating agricultural, economic and environmental factors are valuable in testing and refining the APSIM model predictions, leading to more accurate predictions of EONR" says co-author Dr. Sotirios Archontoulis, Assistant Professor in the Department of Agronomy at Iowa State University, USA.

Archontoulis continues "The study results show that predictions of N fertilizer rates for corn are more accurate when inter-annual variability is taken into account. Site-specific datasets on variables such as landscape factors, weather and prices for fertilizers and crops are also key to achieving the best results."

The study identifies five potential applications where the model could assist N management, ranging from simulation of N dynamics to climate change impact on optimal N requirement. It also found that optimum N rate was high for corn production alone, but could be reduced by rotating the corn with soybean.

The study is timely as environmental concerns are very real and increasing. Excess nutrients such as nitrogen and phosphorus enter the water cycle via surface run-off, leaching or denitrification. This contaminates water systems and can also promote algal growth in water systems which can be toxic, damaging fisheries.

"The study shows that using a combination of methods including process-based modeling, existing N rates and field data really can fine-tune N rate guidance for corn. Ultimately, reducing the use of nitrogen fertilizer is a win-win for the agricultural business and the environment." concludes Puntel.
This work was part of the Agriculture and Food Research Initiative Hatch project No. 1004346 and was also partially supported by the Plant Science Institute, and the Brown Graduate Fellowship program of Iowa State University.

Citation: Puntel LA, Sawyer JE, Barker DW, Dietzel R, Poffenbarger H, Castellano MJ, Moore KJ, Thorburn P and Archontoulis SV (2016) Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation. Front. Plant Sci. 7:1630. doi: 10.3389/fpls.2016.01630


Related Nitrogen Articles:

How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
Nitrogen fixation in ambient conditions
EPFL scientists have developed a uranium-based complex that allows nitrogen fixation reactions to take place in ambient conditions.
New regulators of nitrogen use in plants identified
Researchers have identified a set of gene regulators in plants that could help plants utilize nitrogen better, which would prevent ecological damage from excess nitrogen in the soil.
Boxing up ag field nitrogen
Scientists develop edge-of-field practices so growers can keep the early planting offered by the tile drains while protecting nearby streams-and the Gulf of Mexico-from nitrate contamination.
More Nitrogen News and Nitrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.