Nav: Home

Corn yield modeling towards sustainable agriculture

December 14, 2016

With an innovative modeling approach, researchers set out to examine corn and soybean yields and optimal nitrogen (N) fertilizer rates. In their study, recently published in Frontiers in Plant Science, they uses a 16-year long-term dataset from central Iowa, USA, with a state-of-the-art simulator that modeled corn and soybean yields, improving predictions of optimal N fertilizer rates for corn. This has global relevance for food security and sustainable agricultural practices in light of future climate change scenarios.

Corn, also known as maize, is one of the top three staple crops farmed globally with global production predicted to rise from 720.8 million tons in 2015 to 872.9 by 2030, according to the Food and Agriculture Organization. Corn also requires large nutrient supplements in the form of fertilizer due to its fast-growing, nitrogen hungry characteristics. And global demand is growing. "A huge challenge in agriculture is predicting the optimal N fertilizer rates which, if fine-tuned, can reduce N losses and increase profits", explains Laila Puntel, a graduate student and research assistant in Crop Production and Physiology at Iowa State University, USA, and lead author of the study. The ultimate goal is accurately predicting the economic optimum nitrogen rate (EONR), the amount of nitrogen fertilizer that will provide the maximum economic return to nitrogen added. This is notoriously complex to calculate due to factors including the soil-plant-atmosphere system, uncertainty in weather and fluctuations in crop and fertilizer prices.

To solve this conundrum, many technologies and approaches have been developed to assess the state of agricultural land. These include real-time remote sensing, aerial imaging, soil mapping and nitrate testing, crop canopy sensing and measuring chlorophyll levels. Web applications have also been developed including digital soil and weather databases. However, no single technology can make predictions of yield or optimal N fertilizer rates with the required accuracy or precision.

Puntel and her international co-authors tackled this problem head on, designing an inter-disciplinary approach using field and experimental data. These data were used to test the Agricultural Production Systems sIMulator (APSIM), an internationally recognized highly advanced simulator of agricultural systems.

"We found that long-term experimental data incorporating agricultural, economic and environmental factors are valuable in testing and refining the APSIM model predictions, leading to more accurate predictions of EONR" says co-author Dr. Sotirios Archontoulis, Assistant Professor in the Department of Agronomy at Iowa State University, USA.

Archontoulis continues "The study results show that predictions of N fertilizer rates for corn are more accurate when inter-annual variability is taken into account. Site-specific datasets on variables such as landscape factors, weather and prices for fertilizers and crops are also key to achieving the best results."

The study identifies five potential applications where the model could assist N management, ranging from simulation of N dynamics to climate change impact on optimal N requirement. It also found that optimum N rate was high for corn production alone, but could be reduced by rotating the corn with soybean.

The study is timely as environmental concerns are very real and increasing. Excess nutrients such as nitrogen and phosphorus enter the water cycle via surface run-off, leaching or denitrification. This contaminates water systems and can also promote algal growth in water systems which can be toxic, damaging fisheries.

"The study shows that using a combination of methods including process-based modeling, existing N rates and field data really can fine-tune N rate guidance for corn. Ultimately, reducing the use of nitrogen fertilizer is a win-win for the agricultural business and the environment." concludes Puntel.
-end-
This work was part of the Agriculture and Food Research Initiative Hatch project No. 1004346 and was also partially supported by the Plant Science Institute, and the Brown Graduate Fellowship program of Iowa State University.

Citation: Puntel LA, Sawyer JE, Barker DW, Dietzel R, Poffenbarger H, Castellano MJ, Moore KJ, Thorburn P and Archontoulis SV (2016) Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation. Front. Plant Sci. 7:1630. doi: 10.3389/fpls.2016.01630

http://journal.frontiersin.org/article/10.3389/fpls.2016.01630/full

Frontiers

Related Nitrogen Articles:

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.