Nav: Home

Gene transfer on the fungal highway

December 14, 2016

For bacteria, soil is difficult terrain, with dry areas and air spaces presenting insurmountable obstacles. In order to get around, they need a liquid film in which to swim. They don't demand much: the mucous layer surrounding fungal hyphae is all they need to be able to move around -- and they take advantage of it. The fungal network (mycelium) also provides bacteria with an excellent infrastructure: there may be hundreds of metres of fungal hyphae winding through just one gram of soil. "In the fine liquid film surrounding the hyphae, bacteria can move with much greater speed and direction and cover more distance than in soil water without hyphae," says Tom Berthold, first author of the study and a doctoral researcher at the UFZ Department of Environmental Microbiology. "For bacteria, fungal hyphae are like a motorway which gives them fast, direct access to their food sources."

Because there is often a lot of traffic on the 'fungal highway', the bacteria may come into close contact with one another, exchanging genetic material in the process. "It's similar to the transmission of cold germs on a packed train," explains environmental microbiologist Dr. Lukas Y. Wick. "But unlike a cold, the new genes are usually an asset to the soil bacteria. They enable them to adapt better to different environmental conditions." Depending on the genes they receive through horizontal gene transfer, they may be able to adapt to new environmental conditions or access food sources which they were previously unable to exploit. For example, this might include the pollutants toluene or benzene contained in oil and gasoline, which to bacteria with the right genetic makeup are not only not harmful but actually very tasty food. So the passing on of this ability to other bacterial groups can be very advantageous in terms of the degradation of soil pollutants.

In their research, the UFZ scientists were also able to show that much greater gene transfer takes place between bacteria on the fungal highway than in a moist environment without fungal hyphae. Using computer models that calculate the frequency of gene transfer between bacteria on the hyphae, the researchers came to the same result. Wick continues: "Our study shows that fungal hyphae not only provide soil bacteria with an excellent infrastructure, but also a potential hot spot for bacterial horizontal gene transfer. This previously unknown aspect of fungus-bacteria interaction is an important step towards understanding the complex interactions between soil-dwelling microorganisms."

Fungi therefore may play a very important role in the highly complex soil habitat: in the spread of soil bacteria, their genetic adaptation and diversity, and ultimately also their evolution. "Just a few years ago, we were still completely unaware of this," says Wick. "It's possible that over the course of the Earth's history, bacterial diversity increased massively with the development of mycelium-forming fungi." As far as the breakdown of pollutants is concerned, the UFZ researchers conjecture that soils containing a lot of fungi are probably better equipped than soils with few fungi. This is because the fungal highway enables pollutant-degrading bacteria to reach their food faster and, with the help of gene transfer, they may even be upgraded along the way.
-end-
Useful link:

Video "Bacteria on the 'Fungal Highway': Pseudomonas putida moving along hyphae of Cunninghamella elegans": https://www.youtube.com/watch?v=AnsYh6511Ic

Helmholtz Centre for Environmental Research - UFZ

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.