Nav: Home

A small change with a large impact

December 14, 2016

The uptake of fossil fuel carbon dioxide (CO2) by the ocean increases seawater acidity and causes a decline in carbonate ion concentrations. This process, termed ocean acidification, makes it energetically more costly for calcifying organisms to form their calcareous shells and skeletons. Several studies have shown that this also holds true for Emiliania huxleyi, the world's most abundant and most productive calcifying organism. When exposed to ocean acidification in controlled laboratory experiments, growth and calcification rates of the single-celled alga are slightly reduced. Even after more than two thousand generations under acidified conditions, these responses still prevail to some extent, suggesting that evolutionary adaptation may not be able to completely eliminate the negative effects of ocean acidification. But what this means in terms of the alga's ability to maintain competitive fitness in its natural environment when the ocean continues to acidify was still an open question.

To address this question, a team of researchers led by GEOMAR Helmholtz Centre for Ocean Research Kiel conducted a field experiment using the KOSMOS (Kiel Off-Shore Mesocosms for Ocean Simulations) experimental platform. As part of the research projects SOPRAN (Surface Ocean Processes in the Anthropocene) and BIOACID (Biological Impacts of Ocean Acidification) the KOSMOS system was deployed in the Raunefjord at the west coast of Norway, were blooms of Emiliania huxleyi regularly occur in late spring. Each of the nine KOSMOS units enclosed about 75 cubic metres of seawater in a 25 metres long plastic bag. The "giant test tubes" were brought to carbon dioxide concentrations ranging from present to projected mid-of-next-century levels. For six weeks, the scientists measured various parameters and took samples for further analyses. Sinking particles were collected in funnel-shaped sediment traps at the lower end of the mesocosms and analysed as well.

"In view of Emiliania's rather small changes in metabolic performance observed in previous laboratory experiments, we predicted that it would still be able to maintain its ecological niche in an acidifying ocean. What we observed came as a big surprise," says Prof. Ulf Riebesell, marine biologist at GEOMAR Helmholtz Centre for Ocean Research Kiel and coordinator of the KOSMOS experiments. In the mesocosms simulating future ocean conditions, Emiliania failed to form a bloom. Detailed analysis of the data revealed that Emiliania's downfall started well before the bloom period. A small reduction in cellular growth due to ocean acidification caused the population size to gradually decline during the pre-bloom phase. "When it was time for Emiliania to start bloom formation, there were so few cells left in the plankton community that it couldn't outgrow its competitors anymore," reflects Ulf Riebesell.

The loss of competitive fitness in the calcifying alga had strong impacts on the ecosystem. "The flux of organic matter to depth was strongly reduced in the absence of bloom formation", explains Dr. Kai Schulz, marine biogeochemist at Southern Cross University, Australia. The reason is that Emiliania's dense calcareous platelets function as ballast in aggregated organic matter and accelerate its sinking to the deep ocean. "Without the chalky ballast the aggregates sink more slowly and bacteria have more time to degrade the organic matter in the surface layer. As a result of this, more of the CO2 bound in organic matter remains in the surface layer, which reduces the ocean's potential to take up atmospheric CO2."

Another feedback could result from the fact that Emiliania is one of the dominant producers of dimethylsulfide, a volatile gas which is thought to serve as cooling agent in the climate system. Whereas high concentrations of this gas were recorded in the mesocosms were Emiliania was blooming, they were greatly reduced in the mesocosms simulating future conditions. Less CO2 uptake by the ocean and lower production of the cooling agent dimethylsulfide would both work in the same direction, reducing the ocean's capacity to mitigate global warming.

The results of this study demonstrate the importance of investigating the effects of ocean acidification in natural communities. Small changes in an organism's metabolic performance can have major consequences for its success in its natural habitat, where it is in competition with other species and faces losses from predation or viral infection. "If Emiliania huxleyi fails to maintain its important role, other, possibly non-calcifying, organisms take over. This might initiate a regime shift with far-reaching ecological and biogeochemical consequences", Prof. Riebesell concludes.
-end-
Original publication:

Riebesell, U., Bach, L.T., Bellerby, R.G.J., Bermudez Monsalve, R., Boxhammer, T., Czerny, J., Larsen, A., Ludwig, A., Schulz: Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience (2016), doi:10.1038/ngeo2854

Links:

http://www.bioacid.de BIOACID (Biological impacts of Ocean Acidification) sopran.pangaea.de SOPRAN (Surface Ocean Processes in the Anthropocene)

http://scu.edu.au/coastal-biogeochemistry Centre for Coastal Biogeochemistry, Southern Cross University, Australia

http://www.fimcbor.espol.edu.ec Facultad de Ingenieri?a Mari?tima, Ciencias Biolo?gicas, Ocea?nicas y Recursos Naturales. Escuela Superior Polite?cnica del Litoral, Ecuador http://www.geomar.de GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany

http://www.imr.no Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Norway

http://www.niva.no Norwegian Institute for Water Research (NIVA), Norway

http://english.sklec.ecnu.edu.cn State Key Laboratory of Estuarine and Coastal Research, East China Normal University, China

http://uni.no Uni Research, Norway

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Ocean Acidification Articles:

Ocean acidification could impair the nitrogen-fixing ability of marine bacteria
While increased carbon dioxide levels theoretically boost the productivity of nitrogen-fixing bacteria in the world's oceans, because of its 'fertilizing' effect, a new study reveals how increasingly acidic seawater featuring higher levels of this gas can overwhelm these benefits, hampering the essential service these bacteria provide for marine life.
International team reports ocean acidification spreading rapidly in Arctic Ocean
Ocean acidification (OA) is spreading rapidly in the western Arctic Ocean in both area and depth, according to new interdisciplinary research reported in Nature Climate Change by a team of international collaborators, including University of Delaware professor Wei-Jun Cai.
Unexpected result: Ocean acidification can also promote shell formation
Fact: more carbon dioxide (CO2) in the air also acidifies the oceans.
Ocean acidification to hit West Coast Dungeness crab fishery, new assessment shows
The acidification of the ocean expected as seawater absorbs increasing amounts of carbon dioxide from the atmosphere will reverberate through the West Coast's marine food web, but not necessarily in the ways you might expect, new research shows.
Landmark global scale study reveals potential future impact of ocean acidification
Ocean acidification and the extent to which marine species are able to deal with low pH levels in the Earth's seas, could have a significant influence on shifting the distribution of marine animals in response to climate warming.
More Ocean Acidification News and Ocean Acidification Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...