Nav: Home

A small change with a large impact

December 14, 2016

The uptake of fossil fuel carbon dioxide (CO2) by the ocean increases seawater acidity and causes a decline in carbonate ion concentrations. This process, termed ocean acidification, makes it energetically more costly for calcifying organisms to form their calcareous shells and skeletons. Several studies have shown that this also holds true for Emiliania huxleyi, the world's most abundant and most productive calcifying organism. When exposed to ocean acidification in controlled laboratory experiments, growth and calcification rates of the single-celled alga are slightly reduced. Even after more than two thousand generations under acidified conditions, these responses still prevail to some extent, suggesting that evolutionary adaptation may not be able to completely eliminate the negative effects of ocean acidification. But what this means in terms of the alga's ability to maintain competitive fitness in its natural environment when the ocean continues to acidify was still an open question.

To address this question, a team of researchers led by GEOMAR Helmholtz Centre for Ocean Research Kiel conducted a field experiment using the KOSMOS (Kiel Off-Shore Mesocosms for Ocean Simulations) experimental platform. As part of the research projects SOPRAN (Surface Ocean Processes in the Anthropocene) and BIOACID (Biological Impacts of Ocean Acidification) the KOSMOS system was deployed in the Raunefjord at the west coast of Norway, were blooms of Emiliania huxleyi regularly occur in late spring. Each of the nine KOSMOS units enclosed about 75 cubic metres of seawater in a 25 metres long plastic bag. The "giant test tubes" were brought to carbon dioxide concentrations ranging from present to projected mid-of-next-century levels. For six weeks, the scientists measured various parameters and took samples for further analyses. Sinking particles were collected in funnel-shaped sediment traps at the lower end of the mesocosms and analysed as well.

"In view of Emiliania's rather small changes in metabolic performance observed in previous laboratory experiments, we predicted that it would still be able to maintain its ecological niche in an acidifying ocean. What we observed came as a big surprise," says Prof. Ulf Riebesell, marine biologist at GEOMAR Helmholtz Centre for Ocean Research Kiel and coordinator of the KOSMOS experiments. In the mesocosms simulating future ocean conditions, Emiliania failed to form a bloom. Detailed analysis of the data revealed that Emiliania's downfall started well before the bloom period. A small reduction in cellular growth due to ocean acidification caused the population size to gradually decline during the pre-bloom phase. "When it was time for Emiliania to start bloom formation, there were so few cells left in the plankton community that it couldn't outgrow its competitors anymore," reflects Ulf Riebesell.

The loss of competitive fitness in the calcifying alga had strong impacts on the ecosystem. "The flux of organic matter to depth was strongly reduced in the absence of bloom formation", explains Dr. Kai Schulz, marine biogeochemist at Southern Cross University, Australia. The reason is that Emiliania's dense calcareous platelets function as ballast in aggregated organic matter and accelerate its sinking to the deep ocean. "Without the chalky ballast the aggregates sink more slowly and bacteria have more time to degrade the organic matter in the surface layer. As a result of this, more of the CO2 bound in organic matter remains in the surface layer, which reduces the ocean's potential to take up atmospheric CO2."

Another feedback could result from the fact that Emiliania is one of the dominant producers of dimethylsulfide, a volatile gas which is thought to serve as cooling agent in the climate system. Whereas high concentrations of this gas were recorded in the mesocosms were Emiliania was blooming, they were greatly reduced in the mesocosms simulating future conditions. Less CO2 uptake by the ocean and lower production of the cooling agent dimethylsulfide would both work in the same direction, reducing the ocean's capacity to mitigate global warming.

The results of this study demonstrate the importance of investigating the effects of ocean acidification in natural communities. Small changes in an organism's metabolic performance can have major consequences for its success in its natural habitat, where it is in competition with other species and faces losses from predation or viral infection. "If Emiliania huxleyi fails to maintain its important role, other, possibly non-calcifying, organisms take over. This might initiate a regime shift with far-reaching ecological and biogeochemical consequences", Prof. Riebesell concludes.
Original publication:

Riebesell, U., Bach, L.T., Bellerby, R.G.J., Bermudez Monsalve, R., Boxhammer, T., Czerny, J., Larsen, A., Ludwig, A., Schulz: Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience (2016), doi:10.1038/ngeo2854

Links: BIOACID (Biological impacts of Ocean Acidification) SOPRAN (Surface Ocean Processes in the Anthropocene) Centre for Coastal Biogeochemistry, Southern Cross University, Australia Facultad de Ingenieri?a Mari?tima, Ciencias Biolo?gicas, Ocea?nicas y Recursos Naturales. Escuela Superior Polite?cnica del Litoral, Ecuador GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Norway Norwegian Institute for Water Research (NIVA), Norway State Key Laboratory of Estuarine and Coastal Research, East China Normal University, China Uni Research, Norway

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Ocean Acidification Articles:

Ocean acidification impacts oysters' memory of environmental stress
Researchers from the University of Washington School of Aquatic and Fishery Sciences have discovered that ocean acidification impacts the ability of some oysters to pass down 'memories' of environmental trauma to their offspring.
Coral 'helper' stays robust under ocean acidification
A type of algae crucial to the survival of coral reefs may be able to resist the impacts of ocean acidification caused by climate change.
Ocean acidification is damaging shark scales
Sharks have unusual type of scales referred to as 'denticles.' A research group from South Africa and Germany that includes Jacqueline Dziergwa and Professor Dr.
New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.
Coral skeleton crystals record ocean acidification
The acidification of the oceans is recorded in the crystals of the coral skeleton.
Ocean acidification boosts algal growth but impairs ecological relationships
Shrimp fed on marine algae grown in acidic water do not undergo a sex change that is a characteristic part of their reproductive life-cycle, report Mirko Mutalipassi and colleagues at Stazione Zoologica Anton Dohrn in Italy in a study publishing June 26 in the open-access journal PLOS ONE.
Ocean acidification 'could have consequences for millions'
Ocean acidification could have serious consequences for the millions of people globally whose lives depend on coastal protection, fisheries and aquaculture, a new publication suggests.
Southern Ocean acidification puts marine organisms at risk
New research co-authored by University of Alaska indicates that acidification of the Southern Ocean will cause a layer of water to form below the surface that corrodes the shells of some sea snails.
Ocean acidification harms cod larvae more than previously thought
The Atlantic cod is one of the most important commercial fish species in the world.
Business as usual for Antarctic krill despite ocean acidification
A new IMAS-led study has found that Antarctic krill are resilient to the increasing acidification of the ocean as it absorbs more C02 from the atmosphere due to anthropogenic carbon emissions.
More Ocean Acidification News and Ocean Acidification Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at