Nav: Home

How soil moisture can help predict power outages caused by hurricanes

December 14, 2016

SAN FRANCISCO -- In the days before Hurricane Matthew, researchers used satellite maps of soil moisture to help forecast where the power would go out along the East Coast.

At the American Geophysical Union meeting this week, they report that their method worked with 91 percent accuracy.

The project aims to curtail outages by helping power companies allocate equipment and crews in advance of storms, said Steven Quiring, professor of atmospheric sciences at The Ohio State University.

Healthy trees that receive just the right amount of moisture are less prone to storm damage, he explained, so soil moisture is a good indicator of where outage crews will be needed.

"We see increased numbers of outages at both ends of the spectrum--wherever soils are too wet or too dry," Quiring said. "Drought makes tree branches more likely to snap off, and over-saturation makes trees more likely to be uprooted."

He cited a 2012 report from the Congressional Research Service that named severe weather as the single biggest cause of outages in the United States. More specifically, severe weather damage to vegetation is the biggest cause. Around 62 percent of the time, the report concluded, the power goes out because broken tree branches or falling trunks contact power lines.

For Hurricane Matthew, the researchers were able to forecast five days ahead of time that 4.5 million people would be without power in Georgia, North Carolina, South Carolina and Virginia. The actual number worked out to be around 4.1 million, so the researchers overestimated the extent of outages by around 9 percent.

NASA's Soil Moisture Active Passive (SMAP) satellite mission provided the data, which the researchers cross-referenced with population density, land use, average wind speed and the duration and intensity of storms to make their forecast model.

The team, which includes Seth Guikema at the University of Michigan and Brent McRoberts at Texas A&M, has been using a similar computer model--minus the NASA SMAP soil moisture measurements--to predict hurricane-caused power outages for about a decade. For instance, they correctly estimated that superstorm Sandy would knock out power for about 10 million people in 2012.

Quiring said the researchers are expanding the project to include outages caused by thunderstorms, winter storms and wind storms, which impact a much larger portion of the United States than hurricanes. They are already working with several power companies along the East Coast, and hope to form partnerships with companies in the Midwest and South next.

Outages cost the American economy as much as $33 billion annually, according to the President's Council of Economic Advisers and the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability.
-end-
The DOE, the National Science Foundation and a private utility funded this research. Both the DOE and the Department of Homeland Security, among others, now use the team's forecasts to help plan responses to hurricanes.

Contact: Steven Quiring; Quiring.10@osu.edu

Ohio State University

Related Soil Moisture Articles:

Tracking the tinderbox: Stanford scientists map wildfire fuel moisture across western US
Researchers have developed a deep-learning model that maps fuel moisture levels in fine detail across 12 western states, opening a door for better fire predictions.
Release of a new soil moisture product (2002-2011) for mainland China
A gridded soil moisture product for mainland China from 2002 to 2011 was released in a recent paper in 'Science China Earth Sciences'.
El Niño-linked decreases in soil moisture could trigger massive tropical-plant die offs
New research has found that El Niño events are often associated with droughts in some of the world's more vulnerable tropical regions.
Unsustainable soil erosion in parts of UK
New research demonstrates unsustainable levels of soil erosion in the UK.
Freeze-dried soil is more suitable for studying soil reactive nitrogen gas emissions
Air-dried or oven-dried soils are commonly used in the laboratory to study soil reactive nitrogen gas emissions.
High-def mapping of moisture in the soil
Combining data from satellite-based sensors with data science tools and machine learning methods, researchers have developed a new, higher-resolution way of mapping soil moisture predictions, even in areas where no data have been available.
Do additives help the soil?
A UBC researcher is using her latest study to question whether soil additives are worth their salt.
Climate change impacts peatland CO2 gas exchange primarily via moisture conditions
A new study led by researchers from the University of Eastern Finland and Natural Resources Institute Finland suggests that peatland CO2 exchange is more strongly influenced by drying than warming as such, and that soil moisture may be critical to determining whether fen ecosystems are able to adapt to a changing climate.
Solar-powered moisture harvester collects and cleans water from air
A breakthrough by engineers at The University of Texas at Austin offers new solution through solar-powered technology that absorbs moisture from the air and returns it as clean, usable water.
Getting to the core of underwater soil
Soils all over the Earth's surface are rigorously tested and managed.
More Soil Moisture News and Soil Moisture Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.