Nav: Home

Study shows nanoparticles could be used to overcome treatment-resistant breast cancer

December 14, 2016

CINCINNATI--Researchers at the University of Cincinnati (UC) College of Medicine have been able to generate multifunctional RNA nanoparticles that could overcome treatment resistance in breast cancer, potentially making existing treatments more effective in these patients.

The study, published in the Dec. 14, 2016, online edition of American Chemical Society's ACS Nano and led by Xiaoting Zhang, PhD, associate professor in the Department of Cancer Biology at the UC College of Medicine, shows that using a nanodelivery system to target HER2-positive breast cancer and stop production of the protein MED1 could slow tumor growth, stop cancer from spreading and sensitize the cancer cells to treatment with tamoxifen, a known therapy for estrogen-driven cancer.

MED1 is a protein often produced at abnormally high levels in breast cancer cells that when eliminated is found to stop cancer cell growth. HER2-positive breast cancer involves amplification of a gene encoding, or programming, the protein known as human epidermal growth factor receptor 2, which also promotes the growth of cancer cells. MED1 co-produces (co-expresses) and co-amplifies with HER2 in most cases, and Zhang's previous studies have shown their interaction plays key roles in anti-estrogen treatment resistance.

"Most breast cancers express estrogen receptors, and the anti-estrogen drug tamoxifen has been widely used for their treatment," says Zhang, who is also a member of the Cincinnati Cancer Center and the UC Cancer Institute. "Unfortunately, up to half of all estrogen receptor-positive tumors are either unresponsive or later develop resistance to the therapy. In this study, we have developed a highly innovative design that takes advantage of the co-overexpression of HER2 and MED1 in these tumors."

Zhang and researchers in his lab found that these RNA nanoparticles were able to selectively bind to HER2-overexpressing breast tumors, eliminating MED1 expression and significantly decreasing estrogen receptor-controlled target gene production. The RNA nanoparticles not only reduced the growth and spread of the HER2-overexpressing breast cancer tumors, but also sensitized them to tamoxifen treatment.

"These bio-safe nanoparticles efficiently targeted and penetrated into HER2-overexpressing tumors after administration in animal models," he says. "In addition, these nanoparticles also led to a dramatic reduction in the cancer stem cell content of breast tumors when combined with tamoxifen treatment. Cancer stem cells, as you know, are tumor-causing cells that are known to play essential roles in tumor spread, recurrence and therapy resistance. Eliminating these cells could represent an improved and more desirable treatment strategy for breast cancer patients.

"These findings are highly promising for potential clinical treatment of advanced metastatic and tamoxifen-resistant human breast cancer. Further studies are still needed and hopefully soon we'll be able to test our nanoparticles in clinical trials at the UC Cancer Institute's Comprehensive Breast Cancer Center."
-end-
Along with Zhang, the first author of this study is Yijuan Zhang, PhD, with co-authors Marissa Leonard and Yongguang Yang, PhD from his lab at UC. Other collaborators include Ohio State University researchers Dan Shu, PhD, and Yi Shu, PhD, in the laboratory of RNA nanotechnology expert Peixuan Guo, PhD.

This study was supported by the UC Cancer Institute Drake Pilot Award, Ride Cincinnati, a Cincinnati Cancer Center Pilot Grant, the Susan G. Komen Career Catalyst Research Grant (KG110028), the National Institutes of Health (R01CA197865, R01 EB019036) and the U.S. Department of Defense Idea Award (W81XWH-15-1-0052). Zhang cites no conflict of interest; however, Guo is the cofounder of Biomotor and RNA Nanotechnology Development Corp. Ltd.

University of Cincinnati Academic Health Center

Related Breast Cancer Articles:

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.
Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.
More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.
Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.
Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.
Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.
Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.
Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.
Does MRI plus mammography improve detection of new breast cancer after breast conservation therapy?
A new article published by JAMA Oncology compares outcomes for combined mammography and MRI or ultrasonography screenings for new breast cancers in women who have previously undergone breast conservation surgery and radiotherapy for breast cancer initially diagnosed at 50 or younger.
Blood test offers improved breast cancer detection tool to reduce use of breast biopsy
A Clinical Breast Cancer study demonstrates Videssa Breast can inform better next steps after abnormal mammogram results and potentially reduce biopsies up to 67 percent.
More Breast Cancer News and Breast Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.