Nav: Home

Scientists studying dolphins find Bay of Bengal a realm of evolutionary change

December 14, 2016

New York (Dec.14, 2016) - Marine scientists have discovered that two species of dolphin in the waters off Bangladesh are genetically distinct from those in other regions of the Indian and western Pacific Oceans, a finding that supports a growing body of evidence that the Bay of Bengal harbors conditions that drive the evolution of new life forms, according to a new study by the American Museum of Natural History(AMNH), WCS (Wildlife Conservation Society), and the cE3c - Centre for Ecology, Evolution and Environmental Changes (Universidade de Lisboa).

In the comparative study using DNA collected from both Indo-Pacific humpback dolphins (Sousa chinensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) and data from previous genetic studies, the authors of a newly published paper in Conservation Genetics have found that both populations of both species are distinct from populations in other parts of the Indian Ocean and western Pacific. This discovery follows the recent description of a possible new species of "river shark" in the same waters.

The authors of the study titled "Oceanic drivers of population differentiation in Indo-Pacific bottlenose (Tursiops aduncus) and humpback (Sousa spp.) dolphins of the northern Bay of Bengal" are: Dr. Ana R. Amaral of cE3c, Universidade de Lisboa, Portugal and AMNH's Sackler Institute of Comparative Genomics; Brian D. Smith and Rubaiyat M. Mansur of WCS; and Dr. Howard C. Rosenbaum of WCS and affiliated with AMNH.

"Our findings indicate that there is a connection between the presence of these distinct populations of dolphins and the unique oceanic habitat that is found in the Bay of Bengal," said Amaral, the lead author of the study. "The combination of a biologically rich yet isolated seascape could be driving speciation, or the emergence of new species."

Located in the northern Indian Ocean, the Bay of Bengal receives vast amounts of freshwater and organic matter from the Meghna, Brahmaputra, and Ganges Rivers; the confluence also supports the world's largest mangrove forest. In deeper waters, a submarine canyon called the Swatch-of-No-Ground (SoNG) recycles nutrients through upwelling, all of which creates a biologically productive coastal region with a complex interchange of currents that creates conditions for species to become isolated from other parts of the Indian Ocean.

During the study, researchers collected skin samples from 32 coastal Indo-Pacific and humpback dolphins. Genetic sequences were then extracted from the samples for comparison with previously published sequences for both species. The researchers found both dolphins to be genetically discrete from nearby populations, a tantalizing result that the authors say merits further investigation.

"The discovery of genetically distinct dolphin populations helps us to expand the body of knowledge of how these dolphin species have changed over time," said Howard Rosenbaum, Director of WCS's Ocean Giants Program who added that "these results have significant implications for identifying unique marine mammal populations, which in turn have important conservation implications for safeguarding the long-term biodiversity in this region."

"This is great news for Bangladesh," said Rubaiyat Mansur, Principal Researcher for WCS's Bangladesh Program. "Despite the challenges of wildlife conservation in our country, we take great pride in protecting our wildlife as evidenced by the recent declaration of Bangladesh's first marine protected area in the Swatch-of-No-Ground submarine canyon and adjacent estuarine waters."

The Indo-Pacific bottlenose dolphin that ranges between the Indian and western Pacific Oceans is a smaller version of the better-known common bottlenose dolphin (Tursiops truncatus). The waters of the Bay of Bengal's SoNG canyon are home to one of the world's largest populations of Indo-Pacific bottlenose dolphins.

Humpback dolphins in particular have been a topic of much debate among taxonomists due to the variations in appearance and genetics of animals that inhabit coastal waters from western Africa to the western Pacific. The genus Sousa now contains four species, one of which -- the Australian humpback dolphin (Sousa sahulensis) -- was recently designated as a separate species after a number of comparative studies combining morphology and genetic markers.

While the humpback dolphins in the Bay of Bengal are currently considered as a population of Indo-Pacific humpback dolphins (Sousa chinensis), the population occurs right in between the known ranges of the Indo-Pacific species and the Indian Ocean humpback dolphin (Sousa plumbea). This study's comparison of mitochondrial DNA across populations reveals a closer connection between the Bay of Bengal's humpback dolphins and the more distantly located Australian humpback dolphin.

Both dolphin species are threatened by entanglement and death in gill nets; many of the individual dolphins photographed by researchers bear the scars of fishing gear entanglement while these are only the ones that escaped.

"The results of this study raise important questions about the exact conservation status of these small cetaceans of the Bay of Bengal," said Brian Smith, a co-author on the study and Director of WCS's Asian Freshwater and Coastal Cetacean Program. "Our findings highlight areas for further inquiry as well as the importance of protecting these marine mammals from the threat of fishing entanglement."
-end-
This work was supported by the IWC Small Cetacean Conservation Fund and Ocean Park Conservation Foundation, Hong Kong.

WCS (Wildlife Conservation Society)

MISSION: WCS saves wildlife and wild places worldwide through science, conservation action, education, and inspiring people to value nature. To achieve our mission, WCS, based at the Bronx Zoo, harnesses the power of its Global Conservation Program in nearly 60 nations and in all the world's oceans and its five wildlife parks in New York City, visited by 4 million people annually. WCS combines its expertise in the field, zoos, and aquarium to achieve its conservation mission. Visit: newsroom.wcs.org Follow: @WCSNewsroom. For more information: 347-840-1242.

Wildlife Conservation Society

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".