Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat

December 14, 2017

A 60-year-old mystery about the source of energetic, potentially damaging particles in Earth's radiation belts has been solved using data from a shoebox-sized satellite built and operated by students. The satellite is called a CubeSat.

Imagine a fully instrumented satellite the size of a half-gallon milk carton. Then imagine that milk carton whirling in space, catching never-before-seen glimpses of atmospheric and geospace processes.

CubeSats, named for the roughly 4-inch-cubed dimensions of their basic building elements, are stacked with smartphone-like electronics and tiny scientific instruments.

Built mainly by students and hitching rides into orbit on NASA and U.S. Department of Defense launch vehicles, the small, low-cost satellites have been making history.

Now, results from a new study using CubeSats indicate that energetic electrons in Earth's inner radiation belt -- primarily near its inner edge -- are created by cosmic rays born from supernova explosions, said scientist Xinlin Li of the University of Colorado Boulder (CU Boulder).

Earth's dual radiation belts, known as the Van Allen belts, are layers of energetic particles held in place by the planet's magnetic field.

Soon after the discovery of the Van Allen radiation belts in 1958, American and Russian scientists concluded that the process of "cosmic ray albedo neutron decay" (CRAND) was likely the source of the high-energy particles trapped in Earth's magnetic field. But over the following decades, no one successfully detected the corresponding electrons that should be produced during the neutron decay.

Li's team showed that during CRAND, cosmic rays entering Earth's atmosphere collide with neutral atoms, creating a splash that produces charged particles, including electrons, that become trapped by Earth's magnetic field.

The findings have implications for understanding and better forecasting the arrival of energetic electrons from space, which can damage satellites and threaten the health of space-walking astronauts, said Li.

"We are reporting the first direct detection of these energetic electrons near the inner edge of Earth's radiation belts," said Li. "We have finally solved a six-decade-old mystery."

A paper presenting the findings is published in this week's issue of the journal Nature. Li is the lead author. The study was funded by the National Science Foundation (NSF).

"These results reveal, for the first time, how energetic charged particles in the near-Earth space environment are created," said Irfan Azeem, a program director in NSF's Division of Atmospheric and Geospace Sciences, which supported the research. "The findings will significantly improve our understanding of the Earth-space environment. It's exciting to see NSF-funded CubeSats -- built by undergraduate and graduate students -- at the center of a significant scientific discovery."

The CubeSat mission, called the Colorado Student Space Weather Experiment (CSSWE), housed a small telescope to measure the flux of solar energetic protons and Earth's radiation belt electrons.

Launched in 2012 aboard an Atlas V rocket, CSSWE involved more than 65 students and was operated for more than two years from a ground station on the roof of a building on the CU-Boulder campus.

Part of the work of CSSWE involved building a smaller version of an instrument developed by a CU-Boulder team led by Nature paper co-author Daniel Baker and launched on NASA's 2012 Van Allen Probes mission. The modified instrument is called the Relativistic, Electron and Proton Telescope integrated little experiment (REPTile).

"This is really a beautiful result and a big insight derived from a remarkably inexpensive student satellite, illustrating that good things can come in small packages," said Baker. "It's a major discovery of what has been there all along, a demonstration that Yogi Berra was correct when he remarked, 'You can observe a lot just by looking.'"
-end-
Other Nature paper co-authors include researchers Hong Zhao and Kun Zhang of CU Boulder; Richard Selesnick of the Air Force Research Laboratory at Kirtland Air Force Base in New Mexico; Quintin Schiller of NASA's Goddard Space Flight Center in Greenbelt, Maryland; and Michael Temerin of the University of California, Berkeley.

National Science Foundation

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.