Nav: Home

The role of lipid nanoparticles and its surface modification in reaching the brain

December 14, 2018

Nanomedicine refers to field of science that uses nanotechnology for clinical operations. The use of nanoparticles (NPs) has specially been successful due to their structure. For example, NPs have the ability to cross biological barriers which boosts their effectiveness towards complicated drug delivery problems. This permeability allows NPs to reach biological targets such as brain cells, which would have been impossible by conventional drugs. Due to their effectiveness in this area, NPs have now been prioritized from simply being experimental tests compounds to be used as a workable solution for neurodegenerative disease (ND). NDs, such as Alzheimer's disease and Parkinson's disease are usually correlated with neuronal death, or in other words, the continuous structural and functional neuronal loss.

In common ND treatment strategies, one of the hardest obstruction to overcome is low penetration of the drug through the central nervous system (CNS). One of the reasons for this problem is the Blood Brain Barrier (BBB) and Blood Cerebrospinal Fluid Barrier (BCSFB) which protect the brain from invading and unwanted substances. The barriers carry out their function with the help of multispecific transport proteins and detoxifying enzymes. Using nanoparticles opens up many possibilities to counter such obstacles in the NDs treatment as they are proven to effectively deliver drugs to the CNS. The research focuses on the modification of lipid nanoparticles for brain targeting to increase drug efficiency and ability to deliver different kinds of drugs.

In conclusion, it has been difficult to establish which lipid nanoparticle, based on previous tests, was best for ND treatment since the administration route or animal models for each test were different. For the time being, researchers suggest that additional studies and tests are needed to propel research on CNS based drug delivery towards successful brain cell targeting.
This article is Open Access. To obtain the article please visit

Bentham Science Publishers

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".