Nav: Home

Birth of a hybrid

December 14, 2018

Materials scientists from NUST MISIS and the Merzhanov Institute of Structural Macrokinetics & Materials Science have developed a new method for producing bulk MAX-phases -- layered materials which simultaneously possess the properties of metals and ceramics. By combining the methods of self-propagating high-temperature synthesis and high-temperature shear deformation, it was possible to obtain sufficiently large samples of mixed titanium and aluminum carbide, which in the future can be used as high-temperature heating elements, according to the research paper published in Ceramics International.

Despite the fact that people have been making and working with ceramic materials for about 30 thousand years, scientists are still developing new methods for its production. MAX-phases are layered ceramic materials which contain three elements in their composition: M-metal (most often theses are elements of transition metals), A -- metal/nonmetal (as a rule, these are elements from the 13th and 14th groups, i.e. 3A or 4A -- in a short-period version from the periodic table), and X -- nitrogen or carbon. The resulting nitrides or carbides have the common formula Mn+1AXn (n being from one to three), and have a hexagonal layered structure, thereby acquiring a rather unusual combination of physical properties. These substances have properties of both metals and ceramics: in particular, they have high electrical and thermal conductivity, but resistance to sudden changes in temperature and significant mechanical loads. Materials from this family were first obtained in the 1960s, but scientists have only begun to actively study them over the last decade. Recently various methods have been developed to obtain these materials, the most popular of which being chemical or physical vapor deposition, spark plasma sintering, and hot isostatic pressing. At the same time, the materials are often synthesized in the form of small samples, so a separate technological task based on the MAX phase is necessary to obtain the material in bulk. For this purpose, various options for sintering powder materials are used but all the existing methods are either too technologically complex and therefore expensive, or require several long additional stages to increase the density of the initially porous materials, which does not allow scientists to achieve a sufficient share of the MAX phase in the final material.

The research team from NUST MISIS, led by Denis Kuznetsov, a Candidate of Technical Sciences, has proposed a new method of single stage MAX phase synthesis with a composition of Ti3AlC2 -- a promising material for use as a high-temperature heating element. To obtain it, scientists used a combination of already known methods of self-propagating high-temperature synthesis and shear deformation under pressure. The researchers have also compared two methods of pressing: extrusion pressing, during which the presses' powder was squeezed into a special form, creating rod-like elements, and uniaxial compression, in which the pressed powder was simply squeezed when heated, turning it into plates. The temperature was about 1700 degrees Celsius during pressing, and the whole process lasted about 20-25 seconds.

As a result of this proposed approach, the materials scientists were able to obtain two types of samples with fairly similar characteristics. Both in plates and rods, the density exceeded 95 percent, relative to the powdered material, and the Ti3AlC2 content ranged from 67 to 82 percent.

At the same time, this method's mechanical and physical parameters slightly beat out the samples obtained by extrusion: the compressive strength of those materials was 720 megapascals, while samples obtained through compression only registered a compressive strength of 641 megapascals. Additionally, the samples' registered a better Young`s modulus -- 221 gigapascals to 198, and thermal conductivity -- 22.9 watts per meter when heated by one degree to 22.1 than the compression samples.

According to the researchers, the main advantage of their proposed method is the ability to quickly obtain a relatively bulk material in just one stage -- it doesn't require high temperatures and long hours of sintering. In such a case, the share of MAX-phase in the final substance is quite high, so in the future these materials can be used in devices operating at high temperatures (around 1500 degrees Celsius), such as heating elements or coating for electrical contacts.
-end-


National University of Science and Technology MISIS

Related Thermal Conductivity Articles:

Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.
Isotopically enriched cubic boron nitride reveals high thermal conductivity
An international team of physicists, materials scientists, and mechanical engineers has confirmed the high thermal conductivity predicted in isotopically enriched cubic boron nitride, the researchers report in the electronic edition of the journal Science. c-BN is particularly challenging to make and it's difficult to measure its thermal conductivity accurately when the value is high.
Super-resolution at all scales with active thermal detection
IBS research team found the temperature increase caused by the probe beam could be utilized to generate a signal per se for detecting objects.
Thermal cameras effective in detecting rheumatoid arthritis
A new study, published today in Scientific Reports, highlights that thermal imaging has the potential to become an important method to assess Rheumatoid Arthritis.
Sponge-like 2D material with interesting electrical conductivity and magnetic properties
Researchers synthesize a new 2D Metal Organic Framework with an ever-growing list of possible applications.
Graphene substrate improves the conductivity of carbon nanotube network
Scientists at Aalto University, Finland, and the University of Vienna, Austria, have combined graphene and single-walled carbon nanotubes into a transparent hybrid material with conductivity higher than either component exhibits separately.
Scientists' design discovery doubles conductivity of indium oxide transparent coatings
esearchers at the University of Liverpool, University College London (UCL), NSG Group (Pilkington) and Diamond Light Source have made an important design discovery that could dramatically improve the performance of a key material used to coat touch screens and other devices.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
Scientists can now control thermal profiles at the nanoscale
Scientists have designed and tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures.
Ionic thermal up-diffusion boosts energy harvesting
Recently nanofluidic salinity gradient energy harvesting via ion channels or membranes has drawn increasing concerns due to the advances in materials science and nanotechnology, which exhibits much higher power density than the macro reverse electrodialysis systems, indicating its potential to harvest the huge amount blue energy released by mixing seawater and river water and enhance power extracted for osmotic heat engines.
More Thermal Conductivity News and Thermal Conductivity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.