Temporal control of light echoes

December 14, 2020

'Wie man in den Wald hineinruft, so schallt es heraus' ('shout into the forest and a similar echo will return', or 'What goes around, comes around'), is not only a well-known German proverb, but is also literally true. When a sound wave is reflected, the echo is heard. When exactly it comes back, however, depends on the 'forest' - but first and foremost on the distance between the caller and the place of reflection," explains Professor Torsten Meier from Paderborn University. "Just imagine that you could tailor when you wanted the echo to come back to you," continues the physicist. A team of scientists has now achieved just this. Not for acoustic signals, however, but for optical signals: The scientists succeeded in controlling photon echoes emitted by semiconductor quantum dots with sub-second precision.

Meier explains: "Optical echoes are somewhat different to conventional acoustic echoes, because they are not generated by the reflection of waves, but rather in a non-linear optical process. Two short laser pulses are sent to a sample: The first represents the signal and the second the forest. This provides for the reflection. When the lag time of these pulses is doubled, a new light pulse, the photon echo, is emitted by the system exposed to the light." Using a further control pulse, the researchers were able to control this photon echo within the picoseconds range (i.e. 10-12 of a second), and thereby delay it to a desired point in time. Such control is particularly pertinent for nanophotonic circuits in which multiple optical systems need to be precisely synchronised with each other.

The theoretical prediction of the effect was developed in Professor Torsten Meier's research group. A big challenge was the experimental implementation, which was carried out in the research group led by Professor Ilya Akimov (Technical University of Dortmund): "The temporal control of optical echoes is a highly dynamic effect, whereby the control pulse virtually pauses the system," says Hendrik Rose, a PhD student in Paderborn. Alexander Kosarev, a PhD student at the Technical University of Dortmund, adds: "This effect was recently theoretically predicted, was successfully experimentally implemented by us and offers a wealth of possibilities for manipulating light emissions from semiconductor systems." The samples used were produced in Professor Sven Höfling's (University of Würzburg) research group.

The research findings are the result of a collaboration funded by the German Research Foundation (DFG) as part of the Transregio 142 "Tailored Nonlinear Photonics" project. Based on this first demo, the scientists now want to optimise the effect, by increasing the time lags, for example. The phenomenon is set to be further developed in the future, in particular for novel applications in the field of photonic quantum technologies, which are the subject of intensive research at the Institute for Photonic Quantum Systems (PhoQS) at Paderborn University.
Read the article:

Universität Paderborn

Related Forest Articles from Brightsurf:

Climate shift, forest loss and fires -- Scientists explain how Amazon forest is trapped in a vicious circle
A new study, published in Global Change Biology, showed how the fire expansion is attributed to climate regime shift and forest loss.

Climate extremes will cause forest changes
No year has been as hot and dry as 2018 since climate records began.

Tropical forest loss
A new study from the University of Delaware finds that tropical forest loss is increased by large-scale land acquisitions and that certain kind investment projects -- including tree plantations and plantations for producing palm oil and wood fiber -- are ''consistently associated with increased forest loss.''

When planting trees threatens the forest
The first-of-its-kind study reveals that subsidies for the planting of commercially valuable tree plantations in Chile resulted in the loss of biologically valuable natural forests and little, if any, additional carbon sequestration.

Forest loss escalates biodiversity change
New international research reveals the far-reaching impacts of forest cover loss on global biodiversity.

Beavers are diverse forest landscapers
Beavers are ecosystem engineers that cut down trees to build dams, eventually causing floods.

Smaller tropical forest fragments vanish faster than larger forest blocks
In one of the first studies to explicitly account for fragmentation in tropical forests, researchers report that smaller fragments of old-growth forests and protected areas experienced greater losses than larger fragments, between 2001 and 2018.

Diversifying traditional forest management to protect forest arthropods
The structure of vegetation and steam distance are important factors to consider in order to protect the biodiversity of forest arthropods, as stated in an article now published in the journal Forest Ecology and Management.

California's crashing kelp forest
First the sea stars wasted to nothing. Then purple urchins took over, eating and eating until the bull kelp forests were gone.

Preventing future forest diebacks
Removing dead trees from the forests and reforesting on a large scale: this is the German Federal Government's strategy against 'Forest Dieback 2.0'.

Read More: Forest News and Forest Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.