High-brightness source of coherent light spanning from the UV to THz

December 14, 2020

Analytical optical methods are vital to our modern society as they permit the fast and secure identification of substances within solids, liquids or gases. These methods rely on light interacting with each of these substances differently at different parts of the optical spectrum. For instance, the ultraviolet range of the spectrum can directly access electronic transitions inside a substance while the terahertz is very sensitive to molecular vibrations.

Throughout the years many techniques have been developed to achieve hyperspectral spectroscopy and imaging, allowing scientists to observe the behavior of, for example, molecules when they fold, rotate or vibrate in order to understand the identification of cancer markers, greenhouse gases, pollutants or even substances that could be harmful to us. These ultrasensitive techniques have proven to be very useful in applications related to food inspection, biochemical sensing or even in cultural heritage, to investigate the structure of the materials used for ancient objects, paintings or sculptures.

A standing challenge has been the absence of compact sources that cover such large spectral range with sufficient brightness. Synchrotrons provide the spectral coverage, but they lack the temporal coherence of lasers, and such sources are available only in large-scale user facilities.

Now, in a recent study published in Nature Photonics, an international team of researchers from ICFO, the Max-Planck Institute for the Science of Light, the Kuban State University, and the Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, led by ICREA Prof. at ICFO Jens Biegert, report on a compact high-brightness mid-IR-driven source combining a gas-filled anti-resonant-ring photonic crystal fiber with a novel nonlinear-crystal. The table top source provides a seven-octave coherent spectrum from 340 nm to 40,000 nm with spectral brightness 2-5 orders of magnitude higher than one of the brightest Synchrotron facilities.

Future research will leverage the few-cycle pulse duration of the source for the time-domain analysis of substances and materials, thus opening new opportunities for multimodal measurement approaches in areas such as molecular spectroscopy, physical chemistry or solid-state physics, to name a few.

Reference article: Ugaitz Elu, Luke Maidment, Lenard Vamos, Francesco Tani, David Novoa, Michael H. Frosz, Valeriy Badikov, Dmitrii Badikov, Valentin Petrov, Philip St. J. Russell and Jens Biegert, Seven-octave high-brightness and carrier-envelope-phase-stable light source. Nature Photonics, 2020. DOI: 10.1038/s41566-020-00735-1

Link to the paper: https://www.nature.com/articles/s41566-020-00735-1

Link to the research group led by ICREA Prof. at ICFO Jens Biegert: https://www.icfo.eu/lang/research/groups/groups-details?group_id=25

Link to the Max-Planck Institute for Science and Light: https://mpl.mpg.de/

Link to the Kuban State University: https://www.kubsu.ru/en/

Link to the Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy: https://mbi-berlin.de/

ICFO-The Institute of Photonic Sciences

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.