'Suicide proteins' contribute to sperm creation

December 15, 2003

You might say that caspases are obsessed with death. The primary agents of programmed cell death, or apoptosis, caspases kill cells by destroying proteins that sustain cellular processes. Apoptosis, a highly controlled sequence of events that eliminates dangerous or unnecessary cells, contributes to a wide variety of developmental and physiological processes--in a developing embryo, apoptosis creates the space between fingers and adjusts nerve cell populations to match the number of cells they target; in an adult, apoptosis counters cell proliferation to maintain tissue size and density. Now it appears that caspases may also play a role in creating life. As Bruce Hay, Jun Huh, and colleagues of the California Institute of Technology, report in this issue, multiple caspases and caspase regulators are required for the proper formation of free-swimming sperm in the fruitfly Drosophila.

Caspases, which typically exist in a quiescent state in nearly all cells, are regulated through a complex network of activators and inhibitors. Once activated, a "caspase cascade" ultimately cleaves and irreversibly alters the function of essential cellular proteins, leading to apoptosis. Not surprisingly, cells keep caspase activation under tight wraps. That's why it's intriguing that multiple caspases normally associated with the induction of cell death participate in this non-apoptotic process.

During spermatogenesis, germline precursor cells--the cells that generate sex cells--give rise to 64 haploid spermatids. Spermatids are connected by intracellular "bridges" that, along with most other cytoplasmic components, must be expelled in a process called "individualization" to create terminally differentiated free-swimming sperm. A similar process--elimination of cytoplasm and membrane packaging of individual spermatids--also occurs in mammals, and its disruption is associated with male infertility.

Hay's group studied the consequences of inhibiting caspase activity in the male germline cells of fruitflies and found that individualization depends on caspase activity. The researchers went on to characterize the pathways that activate caspases during sperm individualization and found that several different apoptosis-related caspases and caspase regulators are recruited through different pathways at distinct points in time and space to create individually packaged, free-swimming sperm, a distinctly non-apoptotic process.

Insights into the molecular basis of caspase activation in sperm individualization could provide clues to male infertility and suggest possible treatments.
-end-
PLEASE MENTION PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THESE ARTICLES. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Apoptosis Articles from Brightsurf:

Thymoquinone induces apoptosis & DNA damage in 5-Fluorouracil-resistant colorectal cancer
Volume 11, Issue 31 from @Oncotarget reported that TQ decreased the expression levels of colorectal stem cell markers CD44 and Epithelial Cell Adhesion Molecule Ep CAM and proliferation marker Ki67 in colonospheres derived from both cell lines and reduced cellular migration and invasion.

Oncotarget: Th1 cytokines potentiate apoptosis of breast cancer cells and suppress tumor growth
Volume 11, Issue 30 of Oncotarget reported that previously, the authors showed that anti-estrogen drugs combined with a dendritic cell-based anti-HER-2 vaccine known to induce strong Th1-polarized immunity dramatically improved clinical response rates in patients with HER-2pos/ERpos early breast cancer.

Opening an autophagy window as the apoptosis door starts to close
Tokyo Medical and Dental University (TMDU) researchers have successfully attached the cancer cell-targeting antibody Trastuzumab to a previously reported supermolecule that induces autophagic cell death.

Stop Livin to make lymphoma cells stop living
Researchers at the University of Tsukuba have shown that the protein Livin, an inhibitor of apoptosis or programmed cell death, mediates resistance to immunotherapy in some lymphoma variants.

Protein causes mutations that lead to breast cancer cell aggression
In her previous research, University of Alberta biochemist Ing Swie Goping identified that the protein, BCL-2 interacting killer (BIK), was associated with relapses in breast cancer patients.

Shigella prevents infected cells from sacrificing themselves for the greater good
Researchers from Tokyo Medical and Dental University (TMDU) investigated how Shigella survive and multiply to cause severe inflammatory colitis.

Bacteria can 'outsmart' programmed cell death
To be able to multiply, bacteria that cause diarrhoea block mediators of programmed cell death, a new study in 'Nature Microbiology' shows.

High expression of apoptosis protein (Api-5) in chemoresistant triple-negative breast cancers: an innovative target
78 TNBC biopsies from patients with different responses to chemotherapy were analysed for API-5 expression before any treatment.

High expression of apoptosis protein (Api-5) in chemoresistant triple-negative breast cancers
78 TNBC biopsies from patients with different responses to chemotherapy were analysed for API-5 expression before any treatment.

Researchers describe a mechanism inducing self-killing of cancer cells
A KAIST research team has developed helical polypeptide potassium ionophores that lead to the onset of programmed cell death.

Read More: Apoptosis News and Apoptosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.