New route to Parkinson's found in cells' 'garbage disposal' system

December 15, 2004

Researchers have known that mutations in a key gene called parkin are a major cause of Parkinson's disease (PD). Now they have discovered a new mechanism by which the parkin gene can be compromised, a finding that they say could lead to new drugs for the disorder.

Andrea Lozano, Senior Scientist at the Toronto Western Research Institute, of University Health Network and Professor of Surgery at the University of Toronto and colleagues found that the protein produced by a gene called BAG5 inhibits parkin activity and the action of another protein, called Hsp70, a "chaperone" that works with parkin. They found in studies with rats that BAG5 enhances the death of the dopaminergic neurons targeted by Parkinson's and that inhibiting the gene reduces such death.

Parkin is part of the cell's "garbage disposal" system that rids the cell of unwanted proteins by degrading them. Mutations of parkin eliminate its ability to chemically "tag" such proteins to designate them for destruction in the cell's proteasome--a process called ubiquitinylation. Loss of such ability causes such protein garbage to aggregate into lethal clumps in neurons--a hallmark of many neurodegenerative diseases. In the brain, the parkin protein works with Hsp70, which helps correct the folding of misfolded proteins.

BAG5 is one of a family of BAG proteins known to interact with other proteins to aid a variety of cell processes. The structure of BAG5 led Lozano and colleagues to explore whether it might play a role in the proteasome, along with parkin and Hsp70.

Their experiments revealed that BAG5 was activated when dopaminergic neurons were injured, suggesting a role in neurodegeneration. Experiments also revealed that BAG5 inhibits Hsp70 and interacts directly with parkin, inhibiting its activity. This inhibition, they found, enhances the formation of protein aggregates, and this formation was inhibited when the researchers shut down the activity of BAG5. In other test tube studies, the researchers also found that BAG5 inhibited parkin's ability to protect cells against proteasome dysfunction and cell death.

In experiments with rats, the researchers found that BAG5 enhanced the degeneration of dopaminergic neurons and that inhibiting BAG5 increased neuronal survival.

"Based on our findings, we propose a novel mechanism for neurodegeneration in which BAG5 interacts with both parkin and Hsp70, resulting in decreased parkin and Hsp70 function, two outcomes that are deleterious to cell survival," concluded the researchers. "Given the role of BAG5 in modulating ubiquitinylation, protein aggregation, and cell death, it may serve as a useful therapeutic target for neurodegenerative diseases such as PD."
-end-
The other members of the research team include Suneil K. Kalia, Sang Lee, and Li Liu, of the Toronto Western Research Institute of the University of Toronto; Patrice D. Smith, Stephen J. Crocker, and David S. Park, of the Neuroscience Research Institute of the University of Ottawa; Thorhildur E. Thorarinsdottir and Edward A. Fon, of the Centre for Neuronal Survival of McGill University; and John R. Glover, of the Department of Biochemistry of the University of Toronto. This work was supported by the Canadian Institutes of Health Research (CIHR) (S.K.K., J.R.G., E.A.F., D.S.P., A.M.L.); Michael J. Fox Foundation (T.E.T.); and Parkinson's Society of Canada (D.S.P.).

Suneil K. Kalia, Sang Lee, Patrice D. Smith, Li Liu, Stephen J. Crocker, Thorhildur E. Thorarinsdottir, John R. Glover, Edward A. Fon, David S. Park, and Andres M. Lozano: "BAG5 Inhibits Parkin and Enhances Dopaminergic Neuron Degeneration"

The context and implications of this work are discussed in a Preview by Kenny K.K. Chung and Ted M. Dawson of the Johns Hopkins University School of Medicine.

Publishing in Neuron, Volume 44, Number 6, December 16, 2004, pages 931-945. http://www.neuron.org/.

Cell Press

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.