New microchip technology for medical imaging biomarkers of disease

December 15, 2005

A collaboration between scientists at UCLA, Caltech, Stanford, Siemens and Fluidigm have developed a new technology using integrated microfluidics chips for simplifying, lowering the cost and diversifying the types of molecules used to image the biology of disease with the medical imaging technology, Positron Emission Tomography (PET). These molecules are used with PET to diagnostically search throughout the body to look for (image) the molecular errors of disease and to guide the development of new molecular therapeutics.

PET is a new generation of medical imaging for examining the biology of disease that has been shown to dramatically improve the detection of cancer, stage the extent of cancer throughout the body, detect recurrence of cancer and to help select the right therapy for individual patients.

In Alzheimer's disease, PET has been shown to have a 93% accuracy in detecting Alzheimer's about three years before the conventional diagnosis of "Probable Alzheimer's", when integrated into the clinical workup of patients. In addition, PET has been shown to detect Alzheimer's and other neurological disease years before even symptoms are expressed. PET is also employed to determine which patients with cardiovascular disease will benefit from bypass surgery and angioplasty.

These and other clinical uses of PET employ a labeled version of the sugar glucose, called Fluorodeoxyglucose (FDG). Glucose is a critical fuel for cells throughout the body to perform their normal functions. For example, 95% of the energy for the brain to function comes from glucose. In addition, cancer cells increase their metabolism of glucose about 25 fold. There were about three million clinical PET studies performed in clinical services throughout the world in 2005.

Published this week in the journal Science, scientists demonstrated a new technology of a programmable chip that can dramatically accelerate the development of many new molecular imaging molecules for PET. As a proof of principle, this group of academic and commercial scientists demonstrated that FDG could be synthesized on a "stamp-size" chip. These chips have a design similar to integrated electronic circuits, except they are made up of fluid channels, chambers and values (switches) that can carry out many chemical operations to synthesize and label molecules for PET imaging. All the operations of the chip are controlled and executed by a PC.

FDG was produced on the chip and used to image glucose metabolism in a mouse with a specially designed PET scanner for mice produced by Siemens, called a microPET. The Science paper also illustrated that this technology can also produce the amount of FDG required for human studies. More importantly, the paper illustrates a new base technology for producing and delivering a diverse array of molecular imaging molecules and labeled drugs for use with PET to examine the biology of many diseases for molecular diagnostics and to guide the development of new molecular therapeutics (drugs).

"Chemists synthesize molecules in a lab by mixing chemicals in beakers and repeating experiments many times, but one day soon they'll sit at a PC and carry out chemical synthesis with the digital control, speed and flexibility of today's world of electronics using a tiny integrated microfluidic chip," said Hsian-Rong Tseng, Ph.D, assistant professor of molecular and medical pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA.

There is a vast distribution of manufacturing sites throughout the world producing PET molecular imaging molecules for hospitals, universities and pharmaceutical companies. The goal is to integrate these new chips into a small control device operated by a PC that will be commercially produced. Then to ship chips to users so they can produce whatever molecules they choose for molecular imaging with PET. These chips will be an enabling technology to fuel growth in the number and diversity of imaging molecules and applications of PET in biology and pharmaceutical research and in the care of patients.
-end-
The research is supported by a Department of Energy grant to the UCLA Institute for Molecular Medicine, the National Cancer Institute, the Norton Simon Research Foundation, the UCLA National Cancer Institute Molecular Imaging Training grant and commercial support from Siemens and Fluidigm.

The authors and participating institutions and companies include:

David Geffen School of Medicine at UCLA:
Hsian-Rong Tseng, Guodong Sui, Chengyi Jenny Shu, Alek N. Dooley, Owen N.
Witte, Nagichettiar Satyamurthy, David Stout, Michael Phelps

Caltech:
James R. Heath (also with UCLA), Chung-Cheng Lee, Young-Shik Shin, Arkadij Elizarov

Stanford:
Stephen Quake

Siemens Biomarker Solutions:
Hartmuth Kolb (also with the David Geffen School of Medicine at UCLA)

Fluidigm:
Jiang Huang, Antoine Davidon, Paul Wyatt

University of California - Los Angeles

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.