Research: Snails were overlooked contributors to marsh destruction

December 15, 2005

Buoyed by the effects of an intense drought, otherwise harmless snails likely killed off thousands of acres of salt marsh in the Southeast in recent years.

Periwinkle snails, known to science as Littoraria irrorata, normally coexist happily with salt marsh. But the drought, which lasted from 1999 to 2001, weakened and killed marsh grasses such as cordgrass, or Spartina alterniflora, so extensively that the snails moved from finishing off stressed patches to decimating large pockets of otherwise healthy marsh in concentrated waves. The result: the loss of an estimated 250,000 acres of marsh stretching over 900 miles on the Gulf and southeastern coasts between 1999 and 2003.

So says a paper set to appear Friday in the journal Science.

"It's important to note that drought was the trigger that initiated these events - and because drought stress is becoming more extreme with global warming, events like this could become both more frequent and intense," said Brian Silliman, the paper's lead author and an assistant professor in zoology at the University of Florida.

Salt marshes are key to healthy shorelines and oceans. They provide nurseries for juvenile fish and shellfish, filter water-borne pollutants and calm storm-driven waves, reducing the threat of hurricane-induced flood and erosion.

So scientists and citizens alike watched with alarm as the marshes started dying off from Louisiana to South Carolina beginning in 1999. Most earlier research pointed to the effects of a severe drought as the cause. The drought dried up soils, raised their acidity and boosted estuarine water and soil salinity levels -- all of which were blamed for stressing cordgrass and other marsh grasses beyond their limits.

Silliman and four other authors of the Science paper don't dispute the drought's impact on what scientists call "bottom-up" factors such as increased salinity. But, they say, decades of scientific tradition emphasizing only these types of influences resulted in overlooking "top down" ones - in this case, top-down controls potentially spurred by climate change.

"For ecology in general, the take-home lesson here is that increasing climatic extremes, such as drought stress, can trigger formation of grazer fronts and subsequent waves of habitat die-off in an otherwise stable ecosystem," Silliman said. "For marsh ecology, the message is even clearer: The long-standing paradigm that bottom-up forces rule is officially dead."

Climate change aside, the study also falls in line with other recent studies highlighting the role of predators or other top-down animals. "This study adds to a growing body of evidence showing strong top-down regulation of ecosystems processes, including sharks in the Gulf of Mexico and wolves in Yellowstone Park," Silliman said.

Native and abundant, dime- to quarter-sized periwinkle snails can often be seen hanging on cordgrass above the water line. Contrary to appearances, they don't actually eat the grass, or at least not much of it. Instead, they crunch up the surface to make it easier for colonization by fungi. In a process described as fungal farming, the snails then eat the fungi.

Periwinkle snails normally coexist happily with marsh grasses. But the drought so weakened cordgrass that it began dying off. Snails then moved in, finishing off weakened and dying patches. When these disappeared and exposed mudflats emerged, large numbers of snails moved off the flats and concentrated on the edge of the die off, where healthy grass remained. This migration resulted in the formation of grazer "fronts," which attacked and destroyed more marsh in "waves" of runaway consumption, the authors write.

A team of scientists from UF, the Netherlands Institute of Ecology, Louisiana State University and Brown University reached that conclusion after observations and experiments at 12 randomly selected die-off sites in Louisiana, Georgia and South Carolina. The research was funded by Georgia Sea Grant and The Nature Conservancy.

For part of the work, the scientists simply counted snails. They discovered "extreme densities" of 400 to 2,000 snails per square meter (about 10 square feet) on the borders between healthy and dying marsh. Those numbers compared to almost no snails on exposed grassless mud flats, and far fewer snails in healthy marsh set back from the die-off border.

The researchers also removed snails from plots of healthy marsh, then enclosed the plots with wire mesh, preventing snails from reaching the grass. They put enclosures in the path of expanding die offs, as well as in remnants of healthy marsh. After 14 months, the patches were "robust and green" compared with denuded areas where snails moved through.
-end-
Writer:
Aaron Hoover
352-392-0186
ahoover@ufl.edu

University of Florida

Related Drought Articles from Brightsurf:

Redefining drought in the US corn belt
As the climate trends warmer and drier, global food security increasingly hinges on crops' ability to withstand drought.

The cost of drought in Italy
Drought-induced economic losses ranged in Italy between 0.55 and 1.75 billion euros over the period 2001-2016, and droughts caused significant collateral effects not only on the agricultural sector, but also on food manufacturing industries.

Consequences of the 2018 summer drought
The drought that hit central and northern Europe in summer 2018 had serious effects on crops, forests and grasslands.

Songbirds reduce reproduction to help survive drought
New research from the University of Montana suggests tropical songbirds in both the Old and New Worlds reduce reproduction during severe droughts, and this - somewhat surprisingly -- may actually increase their survival rates.

Predicting drought in the American West just got more difficult
A new, USC-led study of more than 1,000 years of North American droughts and global conditions found that forecasting a lack of precipitation is rarely straightforward.

Where is the water during a drought?
In low precipitation periods - where and how is the limited available water distributed and what possibilities are there for improving retention in the soil and the landscape?

What does drought mean for endangered California salmon?
Droughts threatens California's endangered salmon population -- but pools that serve as drought refuges could make the difference between life and death for these vulnerable fish.

With shrinking snowpack, drought predictability melting away
New research from CU Boulder suggests that during the 21st century, our ability to predict drought using snow will literally melt away.

An evapotranspiration deficit drought index to detect drought impacts on ecosystems
The difference between actual and potential evapotranspiration, technically termed a standardized evapotranspiration deficit drought index (SEDI), can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with indices based on precipitation and temperature.

Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas

Read More: Drought News and Drought Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.