New insight into birth defect characterized by digit duplication and fusion

December 15, 2008

Birth defects characterized by malformation of the limbs are relatively common. New insight into one form of the birth defect synpolydactyly, where individuals have 1 or more digit (finger or toe) duplicated and 2 or more digits fused together, has now been provided by Stefan Mundlos and colleagues, at Universitätsmedizin Berlin, Germany, who studied a mouse model of the condition.

One form of synpolydactyly is caused by mutations in the HOXD13 gene. To understand how these mutations cause disease the authors analyzed mice carrying one of these mutations, Spdh/Spdh mice. Surprisingly, the protein generated by the mutated gene was found to have lost a function of the normal Hoxd13 protein and to have gained a new function. Specifically, the mutant protein was unable to facilitate normal levels of production of the soluble factor RA, and intrauterine treatment with RA restored normal digit formation in Spdh/Spdh mice. As RA was shown to normally suppress the generation of cells that produce and maintain cartilage, the loss-of-function mutated Hoxd13 therefore indirectly promotes the formation of cartilage. Importantly, further analysis indicated the mutated protein also directly induced the generation of cells that produce and maintain cartilage, whereas normal Hoxd13 did not. Thus, mutated Hoxd13 causes syndpolydactyly by inducing the generation of cells that produce and maintain cartilage, both directly and indirectly.
-end-
TITLE: Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis

AUTHOR CONTACT:
Stefan Mundlos
Universitätsmedizin Berlin, Berlin, Germany.
Phone: 49-30-450-569-121; Fax: 49-30-450-569-915; E-mail: stefan.mundlos@charite.de.

View the PDF of this article at: https://www.the-jci.org/article.php?id=36851

JCI Journals

Related Cartilage Articles from Brightsurf:

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Changes in brain cartilage may explain why sleep helps you learn
The morphing structure of the brain's ''cartilage cells'' may regulate how memories change while you snooze, according to new research in eNeuro.

From the lab, the first cartilage-mimicking gel that's strong enough for knees
The thin, slippery layer of cartilage between the bones in the knee is magical stuff: strong enough to withstand a person's weight, but soft and supple enough to cushion the joint against impact, over decades of repeat use.

Little skates could hold the key to cartilage therapy in humans
Unlike humans and other mammals, the skeletons of sharks, skates, and rays are made entirely of cartilage and they continue to grow that cartilage throughout adulthood.

Can magnetic stem cells improve cartilage repair?
Cells equipped with superparamagnetic iron oxide nanoparticles (SPIOs) can be directed to a specific location by an external magnetic field, which is beneficial for tissue repair.

Common conditions keep many patients out of knee cartilage research studies
Issues like age or existing arthritis may preclude patients from participating in clinical studies for new therapies that could benefit them

Will MSC micropellets outperform single cells for cartilage regeneration?
Repair of cartilage injuries or defects is aided by the introduction of mesenchymal stem cells (MSCs), which can be incorporated into hydrogels to amplify their effects.

Exercise helps prevent cartilage damage caused by arthritis
Exercise helps to prevent the degradation of cartilage caused by osteoarthritis, according to a new study from Queen Mary University of London.

Cartilage could be key to safe 'structural batteries'
Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a 'structural battery' prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape.

Potential arthritis treatment prevents cartilage breakdown
In an advance that could improve the treatment options available for osteoarthritis, MIT engineers have designed a new material that can administer drugs directly to the cartilage.

Read More: Cartilage News and Cartilage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.