deCODE discovers genetic markers that improve the power of PSA testing for detecting prostate cancer

December 15, 2010

Reykjavik, ICELAND, 15 December 2010 - Scientists from deCODE genetics and academic colleagues from Iceland, the UK, US, Netherlands, Spain and Romania today report the discovery of a set of single-letter variations in the sequence of the human genome (SNPs) that impact individual baseline levels of prostate specific antigen, or PSA. Testing for PSA levels is the most commonly used screening tool for the detection of prostate cancer. A prostate biopsy is routinely recommended for men with PSA above a certain threshold. However, PSA levels can rise for reasons unrelated to prostate cancer and baseline healthy levels vary substantially between individuals, resulting in many men without cancer being biopsied while cancer in others is not detected. The paper published today demonstrates that analysis of four SNPs can be used to derive a personalized PSA threshold that more accurately identifies those men who are more likely to have a positive biopsy and for whom one should therefore be recommended.

"This is straighforward genetics with direct clinical utility. Detected early, prostate cancer can be treated with near total success. The challenge is to more effectively risk stratify the population, identifying and biopsying those at high risk and with aggressive disease while minimizing the number of negative biopsies we perform. And using the genetics we are improving the sensitivity and specificity of PSA testing. Like virtually every protein in the body, PSA levels vary between individuals according to SNPs that regulate gene expression. The SNPs reported today enable us to personalize PSA thresholds, thereby changing the recommendation on whether to biopsy for a substantial proportion of men. Moreover, the discriminatory power of testing for these SNPs is highest when done in tandem with the SNPs associated directly with risk of the disease measured by our deCODE ProstateCancer™ test. We are working to swiftly incorporate these PSA markers into our testing portfolio," said Kari Stefansson, CEO of deCODE and senior author on the study.

The paper, entitled "Genetic correction of PSA values using sequence variants associated with PSA levels," is published today online in Science Translational Medicine at www.ScienceTranslationalMedicine.org and will appear in an upcoming print edition of the journal. The study was conducted in several stages and involved tens of thousands of men with and without prostate cancer. First, more than 300,000 SNPs were analyzed in 16,000 Icelandic men with PSA measurements but who had never been diagnosed with prostate cancer. SNPs that correlated with PSA levels were identified and then validated in a cohort from the UK. These SNPs were then studied in large case-control cohorts from Iceland, the Netherlands, Spain, Romania and the US to establish the association with PSA levels independent of risk of prostate cancer itself. The authors then demonstrated how measuring four SNPs correlated with PSA levels can be used to obtain a personalized threshold for when to biopsy, and that using such thresholds improves the ratio of positive to negative biopsies. The greatest improvement in prediction accuracy was seen when men are tested both for the PSA correction SNPs as well as a panel of prostate cancer risk SNPs detected by the deCODE ProstateCancer™ test.
-end-
deCODE and the authors wish to thank the thousands of participants who took part in this study. It was funded in part by grant 202059 (PROMARK) and grant 218071 (CancerGene), both from the 7th Framework Program of the European Union.

About deCODE

Headquartered in Reykjavik, Iceland, deCODE genetics is a global leader in analyzing and understanding the human genome. Using its unique expertise and population resources, deCODE has discovered key genetic risk factors for dozens of common diseases ranging from cardiovascular disease to cancer. deCODE employs its capabilities to develop DNA-based tests and scans to better understand individual risk and empower prevention, and partners its tests, intellectual property and analytical capabilities with companies and research institutions around the globe. Through its CLIA- and CAP-certified laboratory deCODE offers DNA-based tests including deCODE ProstateCancer™; deCODE MI™ for heart attack; deCODE BreastCancer, for the common forms of breast cancer; deCODE AF™ for atrial fibrillation and stroke; deCODE Glaucoma™; and deCODE T2™ for type 2 diabetes. Through its pioneering personal genome analysis service deCODEme™, deCODE enables individuals to better understand their risk of dozens of common diseases and to learn about their ancestry and other traits. Visit us on the web at www.decode.com; for our full range of tests and scans at www.decodehealth.com; at www.decodeme.com; and on our blog at www.decodeyou.com.

deCODE genetics

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.