p53 determines organ size

December 15, 2010

In studies conducted on the fruit fly, researchers at IRB Barcelona headed by ICREA Professor Marco Milán have revealed that organs have the molecular mechanisms to control their proportions. In this process the protein p53 plays a crucial role. The study is published today in the prestigious journal PLoS Biology.

The correct establishment of organ proportions, which occurs during embryonic development, is vital for the proper function of all organisms. Alterations in the mechanisms responsible for these processes cause fatal errors in embryos and even cause their death. In the Renaissance period, Leonardo da Vinci, in his famous picture of the "Vitruvian man", reflects the importance of the size of the human beings and of the organs it holds.

Hormones, such as insulin and steroidal hormones, contribute to maintaining this equilibrium. "What we have demonstrated is that the organs themselves also have the mechanisms to maintain a balance of shapes and to grow in a coordinated fashion", states Milán.

Organs have decision-making capacity

The tumour suppressor protein p53 is activated in response to stress, such as that caused by oncogenic mutations, chemical agents or physical stimuli like ultraviolet radiation. This protein induces the death of those cells in which the stress has caused irreversible damage and that can become cancerous. In addition, p53 impedes the proliferation of cells that have self-repairing capacity. In this study the researchers used the wing primordium of the fruit fly "Drosophila melanogaster" as a model. The primordium is responsible for forming the adult wing and was used to study how this stress affects remaining healthy tissue.

Headed by Milán, the study shows that when some specific cells of the wing primordium are subjected to stress, not only is the growth of this part of the organ reduced but also that of the remaining section. As a result, adult flies have smaller but proportional wings. "These experiments indicate that stressed cells send signals to the remaining tissues in order to reduce their growth in order to allow damaged tissue to repair itself and allow the organ to grow in a coordinated manner", explains Milán. When p53 was suppressed in stressed cells, the resulting wings were disproportional. This observation indicates that this protein is crucial for the coordinated growth of the different parts of an organ. Again, nature dictates that size is not relevant but proportions are.
-end-
Reference article:
A dp53 dependent mechanism involved in coordinating tissue growth in Drosophila
Duarte Mesquita, Andrés Dekanty and Marco Milán.
PLoS Biology (2010) [DOI:10.1371/journal.pbio.1000566]

Institute for Research in Biomedicine (IRB Barcelona)

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.