UNC scientists discover potential strategy to improve cancer vaccines

December 15, 2010

CHAPEL HILL, N.C. - The promise of vaccines targeted against various types of cancer has raised the hopes of patients and their families. The reality, however, is that these promising treatments are difficult to develop. One of the challenges is identifying a discrete cellular target to stop cancer growth without inactivating the immune system. Scientists at UNC Lineberger Comprehensive Cancer Center report a laboratory finding that has the potential to increase the effectiveness of therapeutic cancer vaccines.

The team found that the absence of the function of a protein called NLRP3 can result in a four-fold increase in a tumor's response to a therapeutic cancer vaccine. If this finding proves consistent, it may be a key to making cancer vaccines a realistic treatment option. Their findings were published in the Dec. 15, 2010 issue of the journal Cancer Research.

Jonathan Serody, MD, a study author, explains, "This finding suggests an unexpected role for NLRP3 in vaccine development and gives us a potentially pharmacologic target to increase vaccine efficacy."

The research team was headed by co-leaders of the UNC Lineberger Immunology Program: Serody, MD, an expert in tumor immunology, and Jenny Ting, PhD, a pioneer in understanding the NLR family of proteins. Serody is the Elizabeth Thomas Professor of Hematology and Oncology. Ting is UNC Alumni Distinguished Professor of Microbiology and Immunology and director of the Inflammation Center at UNC.

The team discovered that deleting the NLRP3 proteins reduced the supply of a tumor-associated cell called myeloid-derived suppressors, making them five times less effective in reaching the site of tumor growth. Researchers working with Serody had previously shown that these myeloid cells are critically important as they allow the tumor to evade a beneficial immune response. This finding is the first to link immature myeloid cells, NLRP3, and the response to cancer vaccines.

Serody says, "We had originally thought inactivating the NLRP3 protein would decrease the immune system's ability to respond to cancer because NLRP3 is important in alerting immune cells to changes in the environment the immune response to cancer. Instead what we found was that by inactivating these proteins, the tumor vaccine was made more effective because fewer myeloid-derived suppressor cells were available to promote tumor growth and reduce the efficacy of the vaccine."

At present, there is only one FDA-approved cancer vaccine called Provenge, used to treat advanced prostate cancer. Provenge has been shown to extend survival by three to four months.

Vaccines are difficult to make. Because a vaccine is person-specific, made with the individual's immune cells, the production process requires that the individual's cells are isolated and shipped to the company for vaccine production. As a result, the vaccines are expensive. Provenge costs approximately $100,000 for three treatments.

"A vaccine is not like a pill that can be manufactured in bulk," Serody explains. "And, it's not like developing a vaccine against a virus such as polio or smallpox. Cancer cells look a lot like regular cells, so it is hard to trick the body into thinking cancer cells are 'foreign.' Our hope is that our findings and future work in this area will enable us to develop more effective vaccines against many types of cancer. "
-end-
Other UNC authors are Hendrik W. van Deventer, MD, assistant professor of medicine; Joseph E. Burgents, former UNC graduate student, now a postdoctoral fellow at the National Institute of Environmental Health Sciences; Qing Ping Wu, research specialist; Rita-Marie T. Woodford, research assistant in the UNC School of Dentistry; W. June Brickey, research assistant professor of microbiology and immunology; Irving C. Allen, PhD, postdoctoral fellow, UNC Lineberger; and Erin McElvania-Tekippe, former UNC graduate student, now a postdoctoral fellow at Washington University in St. Louis.

University of North Carolina Health Care

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.