Satellites give an eagle eye on thunderstorms

December 15, 2010

MADISON -- It's one of the more frustrating parts of summer. You check the weather forecast, see nothing dramatic, and go hiking or biking. Then, four hours later, a thunderstorm appears out of nowhere and ruins your afternoon.

Thunderstorms can bring intense rain, hail, lightning and even tornadoes, but "predicting them a few hours out is one of the great problems of meteorology," says Chian-Yi Liu, a postdoctoral researcher at the University of Wisconsin-Madison.

And the consequences can be more serious than a rained-out hike -- even major storms can be missed, Liu says, including the one that dumped up to 10 inches of rain on La Crosse, Wis., on Aug. 18, 2007. "Predictions for the day said a moderate chance of thunderstorms," Liu says, "but this one produced an inch or two of rain per hour and caused severe flooding."

Thunderstorms are called "convective storms" because they are powered by differences in air density that cause updrafts and cooling, and can lead to hail, rain, tornadoes and lightning.

In a presentation at the meeting of the American Geophysical Union in San Francisco on Dec. 16, Liu will show that additional data, taken from a satellite, could greatly improve the accuracy of thunderstorm prediction a few hours out.

Liu works at the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at UW-Madison, which both processes satellite data and explores how meteorologists can use more effectively.

"Scientists understand the basic causes of thunderstorm formation," Liu says, "but their major source of data is usually surface observations, or measurements taken from balloons that are released into the lower atmosphere, and they usually lack information about the upper atmosphere."

When Liu and his colleagues introduced data on conditions at 15,000-32,000 feet of altitude into the equation, they found a considerable improvement in the crucial three- to six-hour forecast. The data was collected from 400 different events by sensors on NASA's Aqua satellite that measure conditions at different altitudes.

Convective storms allow the atmosphere to dump excess energy, held in the form of heat and humidity, and release it as wind and especially precipitation. Convection storms are most likely when the atmosphere is unstable, Liu says. "Our analysis shows that if there is instability at around 30,000 feet, with other storm-favorable conditions, a convective storm will develop in the following three to five hours. Using the top-down view of a satellite reverses our usual way of thinking about convective storms, and may suggest an explanation for storms that arise when they would not be predicted using conventional methods."

"For a long time, we have looked at convection and instability from a near-surface perspective," says co-author Steve Ackerman, a professor of meteorology and director of CIMSS. "What Chian-Yi has showed is that this is not always the case, you can drive instability from upper troposphere too."

The troposphere is roughly the lower six miles of the atmosphere.

Convection releases energy and feeds on itself, Ackerman says. "If you have unstable conditions in the atmosphere and things get moving, they will continue to move by themselves. Our perspective has been how it could get started from the ground. Chian-Yi has shown that it can start from the top as well."

CIMSS has a good working relationship with National Weather Service, Ackerman says, and has a "proving ground" process that can quickly incorporate research results into forecast methods.

"In my experience, there are not many advances that come along with so much potential to improve forecasts," Ackerman says. "This is an advance in the science, and it takes this perspective: Let's not always look at the atmosphere from the ground. Let's also look at what happens in the upper atmosphere."
-end-


University of Wisconsin-Madison

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.