Let's do the twist: Spiral proteins are efficient gene delivery agents

December 15, 2011

CHAMPAIGN, Ill. -- Clinical gene therapy may be one step closer, thanks to a new twist on an old class of molecules.

A group of University of Illinois researchers, led by professors Jianjun Cheng and Fei Wang, have demonstrated that short spiral-shaped proteins can efficiently deliver DNA segments to cells. The team published its work in the journal Angewandte Chemie.

"The main idea is these are new materials that could potentially be used for clinical gene therapy," said Cheng, a professor of materials science and engineering, of chemistry and of bioengineering.

Researchers have been exploring two main pathways for gene delivery: modified viruses and nonviral agents such as synthetic polymers or lipids. The challenge has been to address both toxicity and efficiency. Polypeptides, or short protein chains, are attractive materials because they are biocompatible, fine-tunable and small.

"There are very good in vitrotransfection agents available, but we cannot use them in vivo because of their toxicity or because some of the complexes are too large," Cheng said. "Using our polypeptides, we can control the size down to the 200 nanometer range, which makes it a very interesting delivery system for in vivo applications."

A polypeptide called poly-L-lysine (PLL) was an early contender in gene delivery studies. PLL has positively charged side chains - molecular structures that stem from each amino acid link in the polypeptide chain - so it is soluble in the watery cellular environment.

However, PLL gradually fell into disuse because of its limited ability to deliver genes to the inside of cells, a process called transfection, and its high toxicity. Cheng postulated that PLL's low efficiency could be a function of its globular shape, as polypeptides with charged side chains tend to adopt a random coil structure, instead of a more orderly spiral helix.

"We never studied the connections of conformation with transfection efficiency, because we were never able to synthetically make materials containing both cationic charge and a high percentage of helical structures," Cheng said. "This paper demonstrated for the first time that helicity has a huge impact on transfection efficiencies."

Earlier this year, Cheng's group developed a method of making helical polypeptides with positively charged side chains. To test whether a helical polypeptide could be an efficient gene delivery agent, the group assembled a library of 31 helical polypeptides that are stable over a broad pH range and can bond to DNA for delivery. Most of them outperformed PLL and a few outstripped a leading commercial agent called polyethyleneimine (PEI), notorious for its toxicity although it is highly efficient. The helical molecules even worked on some of the hardest cells to transfect: stem cells and fibroblast cells.

"People kind of gave up on polypeptide-based materials for gene deliveries because PLL had low efficiency and high toxicity," Cheng said. "The polypeptide that we designed, synthesized and used in this study has very high efficiency and also well-controlled toxicities. With a modified helical polypeptide, we demonstrated that we can outperform many commercial agents."

The polypeptides Cheng and his co-workers developed can adopt helical shapes because the side chains are longer, so that the positive charges do not interfere with the protein's winding. The positive charges readily bind to negatively charged DNA, forming complexes that are internalized into cellular compartments called endosomes. The helical structures rupture the endosomal membranes, letting the DNA escape into the cell.

To confirm that the spiral polypeptide shape is the key to transfection, the researchers then synthesized two batches of the most efficient polypeptide: one batch with a helical shape, one with the usual random coil. The helical polypeptide far exceeded the random-coil polypeptide in both efficiency and stability.

"This demonstrates that the helicity is very important, because the polymer has exactly the same chemical makeup; the only difference is the structure," said Cheng, who also is associated with the Institute for Genomic Biology and the Beckman Institute for Advanced Science and Technology, both at the U. of I.

Next, the researchers plan to further explore their helical polypeptides' properties, especially their cell-penetrating abilities. They hope to control sequence and structure with precision for specific applications, including gene delivery, drug delivery, cell-membrane penetration and antimicrobial action.
-end-
The National Science Foundation and the National Institutes of Health supported this work. Fei Wang is a professor of cell and development biology and of bioengineering. Postdoctoral researchers Nathan Gabrielson, Lichen Yin and Dong Li and graduate student Hua Lu were co-authors of the paper.

Editor's note: To contact Jianjun Cheng, call 217-244-3924; email jianjunc@illinois.edu.

The paper, "Reactive and Bioactive Cationic α-Helical Polypeptide Template for Nonviral Gene Delivery," is available online.

University of Illinois at Urbana-Champaign

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.