Team designs a bandage that spurs, guides blood vessel growth

December 15, 2011

CHAMPAIGN, Ill. -- Researchers have developed a bandage that stimulates and directs blood vessel growth on the surface of a wound. The bandage, called a "microvascular stamp," contains living cells that deliver growth factors to damaged tissues in a defined pattern. After a week, the pattern of the stamp "is written in blood vessels," the researchers report.

A paper describing the new approach will appear as the January 2012 cover article of the journal Advanced Materials.

"Any kind of tissue you want to rebuild, including bone, muscle or skin, is highly vascularized," said University of Illinois chemical and biomolecular engineering professor Hyunjoon Kong, a co-principal investigator on the study with electrical and computer engineering professor Rashid Bashir. "But one of the big challenges in recreating vascular networks is how we can control the growth and spacing of new blood vessels."

"The ability to pattern functional blood vessels at this scale in living tissue has not been demonstrated before," Bashir said. "We can now write features in blood vessels."

Other laboratories have embedded growth factors in materials applied to wounds in an effort to direct blood vessel growth. The new approach is the first to incorporate live cells in a stamp. These cells release growth factors in a more sustained, targeted manner than other methods, Kong said.

The stamp is nearly 1 centimeter across and is built of layers of a hydrogel made of polyethylene glycol (an FDA-approved polymer used in laxatives and pharmaceuticals) and methacrylic alginate (an edible, Jell-O-like material). The stamp is porous, allowing small molecules to leak through, and contains channels of various sizes to direct the flow of larger molecules, such as growth factors.

The researchers tested the stamp on the surface of a chicken embryo. After a week the stamp was removed, revealing a network of new blood vessels that mirrored the pattern of the channels in the stamp.

"This is a first demonstration that the blood vessels are controlled by the biomaterials," Kong said.

The researchers see many potential applications for the new stamp, from directing the growth of blood vessels around a blocked artery, to increasing the vascularization of tissues with poor blood flow, to "normalizing" blood vessels that feed a tumor to improve the delivery of anti-cancer drugs. Enhancing the growth of new blood vessels in a coordinated pattern after surgery may also reduce recovery time and lessen the amount of scar tissue, the researchers said.

In another study published in 2011, the team developed a biodegradable material that supports living cells. Future research will test whether the new material also can be used a stamp.
-end-
Researchers on the study team also included K. Jimmy Hsia, a professor of mechanical science and engineering and of bioengineering at Illinois; postdoctoral researchers Jae Hyun Jeong and Pinar Zorlutuna; and graduate students Vincent Chan, Chaenyung Cha and Casey Dyck.

This study was supported in part by the National Science Foundation Emergent Behaviors of Integrated Cellular Systems Center at Illinois, Georgia Institute of Technology and Massachusetts Institute of Technology; the U.S. Army Telemedicine & Advanced Technology Research Center; an NSF Career grant; the American Heart Association; and the Amore Pacific Corp.

Bashir, the Abel Bliss Professor of Engineering, also is a professor of bioengineering. He and Kong are affiliates of the Micro and Nanotechnology Lab and the Institute for Genomic Biology at Illinois.

Editor's notes: To reach Hyunjoon Kong, call 217-333-1178; email hjkong06@illinois.edu. To reach Rashid Bashir, email rbashir@illinois.edu.

The paper, "Living Microvascular Stamp for Patterning of Functional Neovessels; Orchestrated Control of Matrix Property and Geometry," is available online and from the U. of I. News Bureau.

University of Illinois at Urbana-Champaign

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.