Improving security in the cloud

December 15, 2011

Less and less of today's computing is done on desktop computers; cloud computing, in which operations are carried out on a network of shared, remote servers, is expected to rise as the demand for computing power increases. This raises some crucial questions about security: Can we, for instance, perform computations on data stored in 'the cloud' without letting anyone else see our information? Research carried out at the Weizmann Institute and MIT is moving us closer to the ability to work on data while it is still encrypted, giving an encrypted result that can later be securely deciphered.

Attempting computation on sensitive data stored on shared servers leaves that data exposed in ways that traditional encryption techniques can't protect against. The main problem is that to manipulate the data, it has to be first decoded. 'Until a few years ago, no one knew if the encryption needed for this sort of online security was even possible,' says Dr. Zvika Brakerski, who recently completed his Ph.D. in the group of Prof. Shafi Goldwasser of the Computer Science and Applied Mathematics Department. In 2009, however, a Ph.D. student at Stanford University named Craig Gentry provided the first demonstration of so-called fully homomorphic encryption (FHE). But the original method was extraordinarily time consuming and unwieldy, making it highly impractical. Gentry constructed his FHE system by using fairly sophisticated math, based on so-called ideal lattices, and this required him to make new and unfamiliar complexity assumptions to prove security. Gentry's use of ideal lattices seemed inherent to fully homomorphic encryption; researchers assumed that they were necessary for the server to perform such basic operations as addition and multiplication on encrypted data.

Brakerski, together with Dr. Vinod Vaikuntanathan (who was a student of Goldwasser's at MIT), surprised the computer security world earlier this year with two recent papers in which they described several new ways of making fully homomorphic encryption more efficient. For one thing, they managed to make FHE work with much simpler arithmetic, which speeds up processing time. And a surprise discovery showed that a mathematical construct used to generate the encryption keys could be simplified without compromising security. Gentry's original ideal lattices are theoretical collections of points that can be added together - as in an ordinary lattice structure - but also multiplied. But the new research shows that the lattice does not have to be ideal, which simplifies the construction immensely. 'The fact that it worked was something like magic, and it has challenged our assumptions about the function of the ideal lattices in homomorphic encryption,' says Brakerski.

Their result promises to pave a path to applying FHE in practice. Optimized versions of the new system could be hundreds - or even thousands of times faster than Gentry's original construction. Indeed, Brakerski and Vaikuntanathan have managed to advance the theory behind fully homomorphic encryption to the point that computer engineers can begin to work on applications. These might include, for instance, securing medical information for research: A third party could perform large medical studies on encrypted medical records without having access to the individuals' information.
-end-
Prof. Shafrira Goldwasser's research is supported by Walmart.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Weizmann Institute of Science

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.