Silencing signals sent by parasite could aid sleeping sickness fight

December 15, 2013

A new discovery by scientists could help combat the spread of sleeping sickness.

Insights into how the parasites that cause the disease are able to communicate with one another could help limit the spread of the infection.

The findings suggest that new drugs could be designed to disrupt the flow of messages sent between these infectious microorganisms.

Sleeping sickness - so named because it disrupts sleep patterns - is transmitted by the bite of the tsetse fly, and more than 69 million people in Africa are at risk of infection. Untreated, it can damage the nervous system, leading to coma, organ failure and death.

During infection, the parasites - known as African trypanosomes - multiply in the bloodstream and communicate with each other by releasing a small molecule. When levels of this molecule become sufficiently high, this acts as a signal for the parasites to stop replicating and to change into a form that can be picked up by biting flies and spread.

A team led by researchers at the University of Edinburgh were able to uncover key components of the parasites' messaging system. They used a technique known as gene silencing, to identify those genes that are used to respond to the communication signals and the mechanisms involved.

Professor Keith Matthews, of the University of Edinburgh's School of Biological Sciences, who led the research, said: "Parasites are adept at communicating with one another to promote their survival in our bodies and ensure their spread - but by manipulating their messages, new ways to combat these infections are likely to emerge."

The research, carried out in collaboration with the University of Dundee, was published in the journal Nature, and funded by the Wellcome Trust.
-end-


University of Edinburgh

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.