Neuronal circuits filter out distractions in the brain

December 15, 2014

Cold Spring Harbor, NY - The next time you are in a crowded room, or a meeting, or even at the park with your kids, take a look around. How many people are on their phone? Distractions invade every aspect of our lives. Status updates, text messages, email notifications all threaten to steal our attention away from the moment. While we fight the urge to check the phone, our brains are making constant judgment calls about where to focus attention. The brain must continually filter important information from irrelevant interference.

Scientists have hypothesized for decades about how the brain might accomplish this, but it has been challenging to find evidence to support the theories. Now, researchers at Cold Spring Harbor Laboratory (CSHL) have identified a neural circuit in the mouse brain that controls attention and sensory processing, providing insight into how the brain filters out distractions. The work has implications for devastating psychiatric disorders such as schizophrenia that are characterized at least in part by significant attention deficits.

The cortex is the region of the brain where most cognitive function happens. It is there that information is processed and interpreted, and decisions are made. But sensory information must pass through a neuronal gate, called the thalamus, on its way to the cortex. The thalamus, a ball-shaped bundle of neurons, is coated in a thin neuronal skin called the thalamic reticular nucleus, or TRN. As early as 1984, Nobel laureate Francis Crick hypothesized that the TRN might function like a guardian of the gate, regulating precisely which information is worthy of being passed on through the thalamus to the cortex for further analysis.

Researchers were intrigued by the hypothesis but faced technical struggles to prove that it was correct. Given the unique anatomical structure of the TRN - analogous to the skin on an apple - scientists were unable to target those neurons specifically. Still, evidence began to mount that the theory could be correct. Dysfunction of the TRN has been implicated in schizophrenia, and activity in the TRN correlates with sensory detection and attention.

Now, nearly 30 years after Crick's hypothesis, a team of CSHL scientists led by Associate Professor Bo Li has been able to provide the elusive evidence that the TRN regulates signaling between the cortex and thalamus. Together, the three structures form a circuit that controls attention and sensory processing in the mouse brain.

Using new viral technology combined with mouse models developed by CSHL Professor Josh Huang, Li and his team found a way to precisely target the TRN. They inactivated a single protein, called ErbB4, specifically in the TRN. Mutations in ErbB4 have been associated in prior studies with schizophrenia and other attention deficit disorders. The protein is found in large amounts in the TRN.

The team found that loss of ErbB4 in the TRN greatly affects the animal's ability to focus amid distractions. "When ErbB4 is absent, we saw that the connections between the cortex and the TRN become much stronger," explains Li. "This perturbs the role of the TRN as a guardian of the thalamus 'gate,' and provides a mechanism for the hypothesis that Crick proposed so long ago."

Beyond offering new insights into the neuronal basis of attention, the research suggests possible targets for therapeutics to treat attention deficit disorders as well as attention problems in broader illnesses including schizophrenia. According to Li, the next step is "to understand how loss of ErbB4 enhances the connections between the cortex and the TRN, which will hopefully enable us to pinpoint more drug targets in the future."
-end-
This work was supported by the Deutsche Forschungsgemeinschaft, the US National Institutes of Health, the Dana Foundation, NARSAD, the Louis Feil Trust, and the Stanley Family Foundation.

"ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection" appears online in Nature Neuroscience on December 15, 2014. The authors are: Sandra Ahrens, Santiago Jaramillo, Kai Yu, Sanchari Ghosh, Ga-Ram Hwang, Raehum Paik, Cary Lai, Miao He, Z. Josh Huang, and Bo Li. The paper can be obtained online at: http://dx.doi.org/10.1038/nn.3897

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu.

Cold Spring Harbor Laboratory

Related Schizophrenia Articles from Brightsurf:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.

Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.

Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.

New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.

Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.

Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.

The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.

Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.

Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.

Read More: Schizophrenia News and Schizophrenia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.