Nav: Home

How recurrent strep A infections affect the brain

December 15, 2015

NEW YORK, NY (December 14, 2015)--Researchers have discovered how immune cells triggered by recurrent Strep A infections enter the brain, causing inflammation that may lead to autoimmune neuropsychiatric disorders in children. The study, performed in mice, found that immune cells reach the brain by traveling along odor-sensing neurons that emerge from the nasal cavity, not by breaching the blood-brain barrier directly. The findings could lead to improved methods for diagnosing, monitoring, and treating these disorders.

The study, led by researchers at Columbia University Medical Center (CUMC) and the University of Minnesota, Minneapolis, was published today in the online edition of the Journal of Clinical Investigation.

Recurrent Group A streptococcus (S. pyogenes) infections, which cause "strep throat," have been linked to autoimmune neuropsychiatric disorders, notably Pediatric Autoimmune Neuropsychiatric Disorders associated with Streptococcal infections, or PANDAS. Children with PANDAS exhibit Tourette's syndrome-like motor and vocal tics or obsessive-compulsive behaviors that appear to happen "out of the blue."

The Strep A bacterial cell wall contains molecules similar to those found in human heart, kidney, or brain tissue, according to a co-leader of the study, Dritan Agalliu, PhD, Assistant Professor of Pathology and Cell Biology (in Neurology and Pharmacology) at CUMC. These "mimetic" molecules are recognized by the immune system, which responds by producing protective antibodies. But because of this molecular mimicry, the antibodies react not only to the bacteria but also to the host tissues, producing autoantibodies that attack the body's own tissues. Previously, scientists did not understand how these autoantibodies would gain access to the brain, because brain vessels form an extremely tight blood-brain barrier that prevents free movement of molecules, antibodies and immune cells from the blood into the brain.

A few years ago, researchers discovered that recurrent Strep A infections trigger the production of immune cells known as Th17 cells, a type of helper T cell, in the nasal cavity. But it was unclear how these Th17 cells lead to brain inflammation and symptoms such as those seen in children with PANDAS.

Studying the tissues of mice infected intranasally with Strep A, Drs. Agalliu and colleagues found that bacterial-specific Th17 cells move along the surface of olfactory, or odor-sensing, axons that extend from the nasal cavity through the cribriform plate, a sieve-like bone that separates the nasal cavity from the brain. From there, the cells reach the olfactory bulb in the brain, which processes information about odors.

"Once the Th17 cells enter the brain, they break down the blood-brain barrier, allowing autoantibodies and other Th17 cells to enter the brain and promote neuroinflammation," said Dr. Agalliu. "What's interesting is that we see abundant Group A Strep bacteria in the nose, but they never penetrate the brain," he added. "This is different from Group B Strep--the cause of bacterial meningitis--which causes neuroinflammation by entering the brain directly."

The findings may lead to a more definitive diagnostic test for PANDAS, which is currently diagnosed based on clinical symptoms and the presence of Strep A infection or autoantibodies against brain proteins. "We are also interested in exploring ways to treat the disorder by repairing the blood-brain barrier itself to prevent the entry of autoantibodies into the brain," said Dr. Agalliu.
-end-
The study's other co-leader was P. Patrick Cleary, PhD, Emeritus Professor of Microbiology at the University of Minnesota, Minneapolis.

The study is titled, "Repeated intranasal GAS exposure promotes CNS entry of IgGs and GAS-specific Th17 cells." The other contributors are: Thamotharampillai Dileepan (University of Minnesota, Minneapolis), Erica D. Smith (University of California, Irvine), Daniel Knowland (University of California, Irvine), Martin Hsu (University of California, Irvine), Maryann Platt (CUMC), Peter Bittner-Eddy (University of Minnesota), Brenda Cohen (University of Minnesota), Peter Southern (University of Minnesota), Elizabeth Latimer (Georgetown University, Washington, DC), and Earl Harley (Georgetown).

The study was supported in part by grants from the National Health Lung, and Blood Institute (7R01 633 HL116995-01), the National Multiple Sclerosis Society, and a generous donation from Newport Equities LLC.

The researchers declare no financial or other conflicts of interest.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Media Contact: Karin Eskenazi, 212-342-0508, ket2116@columbia.edu

Columbia University Medical Center

Related Immune Cells Articles:

Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
A genomic barcode tracker for immune cells
A new research method to pinpoint the immune cells that recognise cancer could significantly change how we treat the disease.
Scientists reminded immune cells on what side they should be
International group of scientists in the joint study of the laboratory of the Wistar Institute, University of Pittsburgh and I.M.
Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.
Study gives new perspective on production of blood cells and immune cells
A new study provides a thorough accounting of blood cell production from hematopoietic stem cells.
Gut immune cells play by their own rules
Only a few vaccines -- for example, against polio and rotavirus -- can be given orally.
Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.
A bad influence: the interplay between tumor cells and immune cells
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ultimately affect response to treatment.
Immune cells help older muscles heal like new
The immune system's macrophage cells are critical to growing muscle tissues in a lab, say the biomedical engineers at Duke University who earlier reported the world's first self-healing lab-grown muscles.
How damaging immune cells develop during tuberculosis
Insights into how harmful white blood cells form during tuberculosis infection point to novel targets for pharmacological interventions, according to a study published in the open-access journal PLOS Pathogens by Valentina Guerrini and Maria Laura Gennaro of Rutgers New Jersey Medical School, and colleagues.
More Immune Cells News and Immune Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.