Prof Helen Lu wins $1.125M grant on new tissue engineering approach to rotator cuff repair

December 15, 2015

Helen H. Lu, professor of biomedical engineering at Columbia Engineering, has won a three-year $1.125 million Translational Research Award grant from the Department of Defense's Congressionally Directed Medical Research Programs for her research on tendon-to-bone integration for rotator cuff repair. Lu is collaborating with William Levine, chairman and Frank E. Stinchfield Professor of Orthopedic Surgery at Columbia University Medical Center. The funding, part of the DoD's Orthopaedic Research Program, will support preclinical trials to test the potential of a nanofiber-based device to enable biological healing between tendon and bone post rotator cuff surgery.

"This is the culmination of our decade-long, interdisciplinary collaboration on integrative rotator cuff repair," Lu says. "What is truly exciting is that the work planned in this new project will bring our novel technology another major step closer to clinical realization."

Rotator cuff tears represent the most common shoulder injury, with more than 600,000 repair procedures performed annually in the U.S. Among military personnel, the incidence of shoulder injuries is more than twice that of the general population. The rotator cuff tendon-to-bone insertion is often the site of injury when the cuff tendon tears. Current repair aims to surgically reconnect the torn tendon to the humerus. However mechanical fixation of the tendon fail to promote its integration with bone, and this inability contributes significantly to the high re-tear rate following cuff surgery.

"So there is a large unmet clinical demand for integrative technologies for rotator cuff repair," Levine observes. To address this problem, Lu, Levine, and their students developed an innovative approach that centers on the regeneration of the tendon-to-bone interface through the design of a biomimetic nanofiber scaffold coupled with controlled stem cell differentiation.

Current clinically available strategies, such as graft patches, provide initial stability to tendons, but ultimately they lack the mechanical integrity and structural make-up necessary for tendon-bone healing. These disadvantages have significantly limited their clinical use.

In contrast, the bioinspired technology developed by Lu and Levine is based on organized nanofibers (aligned and parallel to each other) that enable the integrative repair of rotator cuff tears by targeting the regeneration of the layered tendon-to-bone interface.

"Given that the predominant reason for repair failure and requisite revision surgery is the lack of functional tendon-to-bone integration, our new approach represents a paradigm shift and will improve how tendons are repaired clinically," Levine notes.

Building upon their projects funded by the National Institutes of Health, the New York Stem Cell Foundation, and Wallace H. Coulter-Columbia Partnership, the researchers are planning a series of studies in the DoD grant to expedite tendon-to-bone healing by using the scaffold to harness the regenerative potential of stem cells and growth factor delivery.

Completion of these studies will accelerate the development of a new generation of soft tissue fixation devices for use in both sports medicine and the treatment of degenerative joint diseases, which, says Lu, is "great news for athletes and non-athletes alike. Being able to functionally integrate different tissues such as tendon and bone will lay the foundation for the formation of composite tissue systems and ultimately, pave the way for total limb regeneration."

Columbia University School of Engineering and Applied Science

Related Biomedical Engineering Articles from Brightsurf:

Applying machine learning to biomedical science
Dr Pengyi Yang and colleagues from the University of Sydney have brought together the latest developments in applications of machine learning in biomedical science, showing that new techniques are combining ensemble methods with deep learning, with potential applications in cancer research and better understanding viruses.

Hydrogel paves way for biomedical breakthrough
Dubbed the ''invisibility cloak'', engineers at the University of Sydney have developed a hydrogel that allows implants and transplants to better and more safetly interact with surrounding tissue.

Biomedical instrument based on microvesicles
Researchers have proved that a microvesicle-based instrument can be effective in reducing inflammation and immune response.

Biomedical researchers get closer to why eczema happens
A new study from researchers at Binghamton University, State University of New York may help to peel back the layers of unhealthy skin -- at least metaphorically speaking -- and get closer to a cure.

Artificial intelligence improves biomedical imaging
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.

Transparency and reproducibility of biomedical research is improving
New research publishing Nov. 20 in the open-access journal PLOS Biology from Joshua Wallach, Kevin Boyack, and John Ioannidis suggests that progress has been made in key areas of research transparency and reproducibility.

A pill for delivering biomedical micromotors
Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality.

Accounting for sex differences in biomedical research
When it comes to health, a person's sex can play a role.

Biomedical Engineering hosts national conference on STEM education for underserved students
The University of Akron hosts a national conference aimed at ensuring underserved students have access to opportunities in science, technology, engineering and mathematics (STEM).

Boosting the lifetime and effectiveness of biomedical devices
A research team led by the University of Delaware's David Martin has discovered a new approach to boosting the lifetime and effectiveness of electronic biomedical devices.

Read More: Biomedical Engineering News and Biomedical Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to