CWRU researchers to make virtual energy audits a reality

December 15, 2015

Case Western Reserve University researchers were awarded a $1.4 million U.S. Department of Energy grant to develop software to perform virtual energy audits of light commercial buildings.

In addition to audits, the computer program will enable a building owner to assess energy efficiency and elicit the most cost-effective solutions to energy waste.

"Before big data analytics, to pinpoint a building's efficiency problems, we had to walk through a building, read sensors and conduct blower door and smoke tests," said Alexis Abramson, a professor of mechanical and aerospace engineering and director of the Great Lakes Energy Institute at Case Western Reserve. "By analyzing at least two years of whole building energy use data, we can uncover some of the same information."

Large industrial buildings are often wired to provide owners details of energy consumption, but the practice is uncommon in light commercial buildings, particularly older structures.

The national goals of the project are to help ensure that the United States maintains a technological lead in developing and deploying energy efficient technologies, enhance the nation's economic and energy security by improving the energy efficiency of buildings and reduce energy imports as well as harmful emissions. The funding comes from the Advanced Research Projects Agency-Energy (ARPA-E) program.

Abramson and Roger French, the F. Alex Nason professor of materials science and engineering at the Case School of Engineering, and Jiayang Sun, professor of epidemiology and biostatistics at the Case Western Reserve School of Medicine, will work with Milwaukee-based Johnson Controls Inc., a world leader in building-efficiency equipment, controls and services, to develop the software over the next three years. The software will assess and analyze multiple streams of data, including climate, weather, the amount of sunshine each day and utility meter records.

"The data streams are like DNA, which has codes imbedded in it. It took us a while to understand what these codes meant," Abramson said. "Similarly, we can find out what's going on inside a building by uncovering the codes in the data."

The researchers are looking for patterns and correlations in the data that reveal if the heating and ventilation systems are oversized or undersized, when the lights come on, if the building needs better insulation and windows, and more. Using this information, a predictive model, developed from the building's data, can then be created and tested.

For example, a building's electric meter may show substantial fluctuation in energy use. If the fluctuation, when tied to many days worth of weather records, is statistically significant, it could signal a leaky building. With that information, the software could build models that would suggest high return-on-investment, energy-efficiency solutions based on predicted performance.

The CWRU project is one of 41 nationally to receive funding under ARPA-E OPEN this year. Following contract negotiations, the researchers begin their work this winter.
-end-


Case Western Reserve University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.