Fracking plays active role in generating toxic metal wastewater, Dartmouth study finds

December 15, 2015

HANOVER, N.H. - The production of hazardous wastewater in hydraulic fracturing is assumed to be partly due to chemicals introduced into injected freshwater when it mixes with highly saline brine naturally present in the rock. But a Dartmouth study investigating the toxic metal barium in fracking wastewater finds that chemical reactions between injected freshwater and the fractured shale itself could play a major role.

The findings, which are published in the journal Applied Geochemistry, show that transformation of freshwater used for fracking to a highly saline liquid with abundant toxic metals is a natural consequence of water-rock reactions occurring at depth during or following fracking. Fracking wastewater poses a hazard to drinking water supplies if improperly disposed. A PDF is available on request.

The researchers examined samples from three drill cores from the Marcellus Shale in Pennsylvania and New York to determine the possible water-rock reactions that release barium and other toxic metals during hydraulic fracturing. The Marcellus Shale in the eastern United States contains large natural gas reserves, which have been extensively exploited in recent years using hydraulic fracturing. A mile below the earth's surface where fracturing takes place, chemical reactions occur between water and fractured rock at elevated pressure and temperature and in the absence of oxygen.

Hydraulic fracturing is an important technological advance in the extraction of natural gas and petroleum from black shales, but produced wastewater, or water that is produced along with shale gas and petroleum following fracking, is extremely saline and contains extraordinarily high concentrations of barium. It has been assumed that the peculiar composition of the produced wastewater results from mixing of freshwater used for fracking with high salinity water already underground that also contains barium. But the Dartmouth team found that a large amount of barium in the shale is tied to clay minerals, and this barium is readily released into the injected water as the water becomes more saline over time.

"Based on barium yields determined from laboratory leaching experiments of the Marcellus Shale and a reasonable estimate of the water/rock mass ratio during hydraulic fracturing, we suggest that all of the barium in produced water can be reconciled with leaching directly from the fractured rock," says senior author Mukul Sharma, a professor of Earth Sciences. "Importantly, barium behavior allows us to understand the behavior of radium, which is very abundant in produced water and is a very real environmental concern. There has been much discussion about injection of water with lots of toxic compounds during fracking. What is less known is that produced water is hazardous waste and chemical reactions between water and the rock are likely playing a role in its formation, not simply a mixing of freshwater with natural brines in the rock."
The study was authored by Assistant Professor Devon Renock, Research Scientist Josh Landis and Professor Mukul Sharma, who is available to comment at

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit:

Dartmouth College

Related Natural Gas Articles from Brightsurf:

Study reveals how to improve natural gas production in shale
A new hydrocarbon study contradicts conventional wisdom about how methane is trapped in rock, revealing a new strategy to more easily access the valuable energy resource.

A new material for separating CO2 from industrial waste gases, natural gas, or biogas
With the new material, developed at the University of Bayreuth, the greenhouse gas carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling.

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.

Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses

Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.

Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.

Read More: Natural Gas News and Natural Gas Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to