Enlisting distributed energy devices to balance the power grid

December 15, 2015

RICHLAND, Wash. - The electric grid has to balance power supply and demand nearly in real-time, requiring power plants to be adjusted on a second-by-second basis. This instantaneous balance is made significantly more complex by renewable energy such as wind and solar, which add more uncertainty and variability.

A new research project is proposing a unique solution to this growing problem: employing the millions of distributed energy resources that already exist, such as solar panels on rooftops and heating and cooling systems in buildings. The new approach uses these resources to balance the power grid, increase reliability and decrease carbon emissions. This incentive-based coordination and control system for distributed energy resources is also expected to make the grid more efficient, sustainable and resilient.

The $4 million project was one of 12 new projects announced Friday by DOE's Advanced Research Projects Agency-Energy, or ARPA-E. The Department of Energy's Pacific Northwest National Laboratory is leading the project.

"Our new approach to balancing the power grid offers a great deal of flexibility and the potential to increase system reliability," said PNNL engineer Karan Kalsi, who is leading the project. "It would give the future power grid the ability to quickly take on and shed power, which would also enable us to incorporate more intermittent renewable energy into the nation's power mix."

PNNL's project team includes United Technologies Research Center, GE's Grid Solutions (formerly Alstom Grid), Southern California Edison, PJM Interconnection and California Independent System Operator (also known as CaISO).

Better, bigger

This new approach will be far more advanced than existing efforts to coordinate distributed energy resources. Most methods being considered today focus on just one type of resource, only offer one grid-balancing service and ignore local system requirements. The PNNL-led team is incorporating many different resources and grid-balancing services in its system, while also ensuring local power reliability is maintained.

To test the system, more than 100 actual distributed energy devices - including heating and cooling systems at commercial and residential buildings, inverters for utility-owned solar panels and residential water heaters - will be managed with the new system. And to evaluate the system on a larger scale, more than 100,000 simulated devices will also be managed through several grid modeling tools that PNNL is combining for the project.

How it will work

The new method will involve asking companies, citizens and others to voluntarily enroll their distributed resources, which include batteries, smart appliances, electric cars, solar panels and heating & cooling systems. Owners of participating resources would be offered incentives - which could include a contract, a payment, a coupon or something else - to encourage them to enroll their devices.

Sensors and controls would be installed on enrolled resources to detect and alter their operations as needed, but within limits set by device owners. The sensors would allow resources to communicate through a cooperative decision-making platform, where information about the power needs of the grid and individual distributed resources are exchanged.

High-speed local controls will be used to operate the devices. The system's computational framework can estimate distributed resource needs and only has to occasionally communicate incentives to encourage the devices to alter their energy consumption.

A new organization called a distribution reliability coordinator would then evaluate the flexibility of various distributed resources to simultaneously provide the following three grid services: ARPA-E awarded the project a total of about $2.7 million, approximately $1.4 million of which will go to PNNL. An additional $1.3 million of the project's expenses will be covered by cost sharing from project partners.
-end-
For more information about this and the other projects announced Friday, go to http://arpa-e.energy.gov/sites/default/files/documents/files/NODES_Project_Descriptions.pdf.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,400 staff and has an annual budget of nearly $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

DOE/Pacific Northwest National Laboratory

Related Renewable Energy Articles from Brightsurf:

Creating higher energy density lithium-ion batteries for renewable energy applications
Lithium-ion batteries that function as high-performance power sources for renewable applications, such as electric vehicles and consumer electronics, require electrodes that deliver high energy density without compromising cell lifetimes.

Renewable energy targets can undermine sustainable intentions
Renewable energy targets (RETs) may be too blunt a tool for ensuring a sustainable future, according to University of Queensland-led research.

Intelligent software for district renewable energy management
CSEM has developed Maestro, an intelligent software application that can manage and schedule the production and use of renewable energies for an entire neighborhood.

Renewable energy transition makes dollars and sense
New UNSW research has disproved the claim that the transition to renewable electricity systems will harm the global economy.

Renewable energy advance
In order to identify materials that can improve storage technologies for fuel cells and batteries, you need to be able to visualize the actual three-dimensional structure of a particular material up close and in context.

Illuminating the future of renewable energy
A new chemical compound created by researchers at West Virginia University is lighting the way for renewable energy.

Using fiber optics to advance safe and renewable energy
Fiber optic cables, it turns out, can be incredibly useful scientific sensors.

Renewable energy developments threaten biodiverse areas
More than 2000 renewable energy facilities are built in areas of environmental significance and threaten the natural habitats of plant and animal species across the globe.

Could water solve the renewable energy storage challenge?
Seasonally pumped hydropower storage could provide an affordable way to store renewable energy over the long-term, filling a much needed gap to support the transition to renewable energy, according to a new study from IIASA scientists.

Scientists take strides towards entirely renewable energy
Researchers have made a major discovery that will make it immeasurably easier for people (or super-computers) to search for an elusive 'green bullet' catalyst that could ultimately provide entirely renewable energy.

Read More: Renewable Energy News and Renewable Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.