Nav: Home

Novel imaging technique captures beauty of metal-labeled neurons in 3-D

December 15, 2015

Researchers have discovered a dazzling new method of visualizing neurons that promises to benefit neuroscientists and cell biologists alike: by using spectral confocal microscopy to image tissues impregnated with silver or gold.

Rather than relying on the amount of light reflecting off metal particles, this novel process, to be presented in the journal eLife, involves delivering light energy to silver or gold nanoparticles deposited on neurons and imaging the higher energy levels resulting from their vibrations, known as surface plasmons.

This technique is particularly effective as the light emitted from metal particles is resistant to fading, meaning that decades-old tissue samples achieved through other processes, such as the Golgi stain method from the late 1880s, can be imaged repeatedly.

The new process was achieved by using spectral detection on a Laser Scanning Confocal Microscope (LSCM), first made available in the late 1980s and, until now, used most extensively for fluorescent imaging.

Paired with such methods, silver- and gold-based cell labeling is poised to unlock new information in a myriad of archived specimens. Furthermore, silver-impregnated preparations should retain their high image quality for a century or more, allowing for archivability that could aid in clinical research and disease-related diagnostic techniques for cancer and neurological disorders.

"For the purposes of medical diagnostics, older and newer specimens could be compared with the knowledge that signal intensity would remain fairly uniform regardless of sample age or repeated light exposure," says contributing author Karen Mesce from the University of Minnesota.

"With the prediction that superior resolution microscopic techniques will continue to evolve, older archived samples could be reimagined with newer technologies and with the confidence that the signal in question was preserved. The progression or stability of a cancer or other disease could therefore be charted with accuracy over long periods of time."

To appreciate the enhanced image quality produced by the new technique, the team first examined a conventional brightfield image of a metal-labelled neuron within a grasshopper's abdominal ganglion, a type of mini-brain which, even at that size, presented out-of-focus structures.

They then imaged the same ganglion with the spectral LSCM adjusted to the manufacturer's traditional fluorescence settings, resulting only in strong natural fluorescence and a collective dark blur in place of the silver-labelled neurons.

However, after collecting the light energy emitted from vibrating surface plasmons in the spectral LSCM, the team obtained spectacular three-dimensional computer images of silver and gold-impregnated neurons. This holds enormous potential for stimulating a re-examination of archived preparations, including Golgi-stained and cobalt/silver-labelled nervous systems.

Additionally, by using a number of different metal-based cell-labeling techniques in combination with the new LSCM protocols, tissue and cell specimens can be generated and imaged with ease and in great three-dimensional detail. Changes in even small structural details of neurons can be identified, which are often important indicators of neurological disease, learning and memory, and brain development.

"Both new and archived preparations are essentially permanent and the information gathered from them increases the data available for characterizing neurons as individuals or as members of classes for comparative studies, adding to emerging neuronal banks," says co-first author Karen Thompson from Agnes Scott College.

"Just as plasmon resonance can explain the continued intensity of the red (caused by silver nanoparticles) and yellow (gold nanoparticles) colors in centuries-old medieval stained glass and other works of art, metal-impregnated neurons are also likely never to fade, neither in the information they provide nor in their intrinsic beauty," adds Mesce.
-end-
Reference

The paper 'Plasmon resonance and the imaging of metal-impregnated neurons with the laser scanning confocal microscope' can be freely accessed online at eLife.09388">http://dx.doi.org/10.7554/eLife.09388. Contents, including text, figures, and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a unique collaboration between the funders and practitioners of research to improve the way important research is selected, presented, and shared. eLife publishes outstanding works across the life sciences and biomedicine -- from basic biological research to applied, translational, and clinical studies. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust. Learn more at elifesciences.org.

eLife

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".