Nav: Home

VERITAS detects gamma rays from galaxy halfway across the visible universe

December 15, 2015

In April 2015, after traveling for about half the age of the universe, a flood of powerful gamma rays from a distant galaxy slammed into Earth's atmosphere. That torrent generated a cascade of light - a shower that fell onto the waiting mirrors of the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in Arizona. The resulting data have given astronomers a unique look into that faraway galaxy and the black hole engine at its heart.

Gamma rays are photons of light with very high energies. These gamma rays came from a galaxy known as PKS 1441+25, which is a rare type of galaxy known as a blazar. At its center it hosts a supermassive black hole surrounded by a disk of hot gas and dust.

As material from the disk swirls toward the black hole, some of it gets channeled into twin jets that blast outward like water from a fire hose only much faster - close to the speed of light. One of those jets is aimed nearly in our direction, giving us a view straight into the galaxy's core.

"We're looking down the barrel of this relativistic jet," explains Wystan Benbow of the Harvard-Smithsonian Center for Astrophysics (CfA). "That's why we're able to see the gamma rays at all."

One of the unknowns in blazar physics is the exact location of gamma-ray emission. Using data from VERITAS, as well as the Fermi Gamma-Ray Space Telescope, the researchers found that the source of the gamma rays was within the relativistic jet but surprisingly far from the galaxy's black hole. The emitting region is at least a tenth of a light-year away, and most likely is 5 light-years away. (A light-year is the distance light travels in one year, or about 6 trillion miles.)

Moreover, the region emitting gamma rays was larger than typically seen in an active galaxy, measuring about a third of a light-year across.

"These jets tend to have clumps in them. It's possible that two of those clumps may have collided and that's what generated the burst of energy," says co-author Matteo Cerruti of the CfA.

Measuring high-energy gamma rays at all was a surprise. They tend to be either absorbed at the source or on their long journey to Earth. When the galaxy flared to life, it must have generated a huge flood of gamma rays.

The finding also provides insight into a phenomenon known as extragalactic background light or EBL, a faint haze of light that suffuses the universe. The EBL comes from all the stars and galaxies that have ever existed, and in a sense can track the history of the universe.

The EBL also acts like a fog to high-energy gamma rays, absorbing them as they travel through space. This new measurement sets an indirect limit on how abundant the EBL can be - too much, and it would have absorbed the gamma-ray flare. The results complement previous measurements based on direct observations.

Harvard-Smithsonian Center for Astrophysics

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".