Nav: Home

RateX: TUM team wins a Bell Labs Prize

December 15, 2015

Three young researchers from the Technical University of Munich (TUM) have won a prestigious Bell Labs Prize, tied for third place in a global competition in information and communications technology. They showed how a single type of transceiver could be used across the full range of digital communications systems, ensuring in each instance that its transmission rate will approach the theoretical limit. Their method could enhance flexibility and reduce costs in the engineering of wireless, wireline, optical fiber, and satellite systems.

Dr. Georg Boecherer is a postdoctoral researcher in the Department of Electrical and Computer Engineering at TUM; Patrick Schulte and Fabian Steiner are doctoral candidates who began working with Boecherer as master's students. The three share equally in the prize, a personal award of $25,000 from Alcatel-Lucent Bell Labs. The other prizes awarded went to a professor at Carnegie Mellon University and a professor at the University of California, San Diego.

Seeking business breakthroughs through science

The competition called for innovative proposals "that have the potential to change the way we live, work, and communicate with each other." From more than 250 ideas submitted in April, the field was narrowed to 20 teams. These were matched with Bell Labs researchers and business managers to further develop their proposals. Seven finalists presented their ideas at Bell Labs' headquarters in the U.S. The criteria on which they were judged included innovation potential, technical merit, feasibility, and business impact. One first prize was awarded; the TUM team tied for third place, and no second prize was given.

"Nothing brings out the creative power of research better than competing to transform society and grow industries," says Marcus Weldon, president of Bell Labs and chief technology officer of Alcatel-Lucent. "The Bell Labs Prize celebrates the interplay of science and engineering that has flourished here for 90 years, allowing us to dream up the future and create the ideas that will build the technology necessary to get us there."

RateX - "a universal method"

Information theory determines the upper limit to how much data can be transmitted reliably over a given channel, taking into account characteristics such as the signal-to-noise ratio. Over the past few decades, engineers have developed information coding and modulation schemes that seek to optimize performance for specific types of systems, but two serious challenges remain: There's always a gap between what theory predicts and what the technology can deliver, and no approach is universally applicable. The TUM researchers claim to have overcome both of these limitations.

Their "RateX" method brings together three essential functions for the first time, in a way that offers the industry an unprecedented level of flexibility. "It's an elegant solution," says Prof. Gerhard Kramer, Chair for Communications Engineering, "creating a clean layering of signal shaping, encoding, and modulation within the physical layer of the Open Systems Interconnection model. This is a universal method that could become the de facto way of doing things in the future."

Many components used in diverse communications systems today could be replaced by a single chip implementing the RateX algorithm. Not only would such a chip be less complex and more power-efficient than today's technology, but it also could offer cost and reliability advantages associated with economies of scale. Within ten or fifteen years there could be billions of such chips in use if, as Kramer expects, the RateX method becomes standard for 5G wireless, optical, satellite, DSL, and other communications technologies.

The key to closing the capacity gap, Georg Boecherer says, was to add one special device, a distribution matcher. "The only thing this device is doing," he explains, "is transforming bits with a uniform distribution into a sequence of symbols with non-uniform distribution. This mapping is reversible, so from the sequence of symbols we can recover the bits."

Combining the distribution matcher and a novel coding design with existing tools should push practical transmission rates to the theoretical limits - and the first experimental studies with optical fiber and wireline DSL systems appear to confirm this. The practical consequences should include higher data rates, a longer reach, and lower power consumption for all kinds of systems. Because RateX adapts easily to the actual channel, it should be as well suited for the short-range wireless links that will be a ubiquitous feature of the "Internet of Things" as for the world's long-haul fiber-optic backbones.

This research has been supported by the German Federal Ministry of Education and Research (BMBF) in the framework of an Alexander von Humboldt Professorship and by the TUM Institute for Advanced Study.

Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation. Georg Boecherer, Fabian Steiner, and Patrick Schulte. DOI: 10.1109/TCOMM.2015.2494016

Constant Composition Distribution Matching. Patrick Schulte and Georg Boecherer. DOI: 10.1109/TIT.2015.2499181

Experimental Demonstration of Capacity Increase and Rate-Adaptation by Probabilistically Shaped 64-QAM. F. Buchali, G. Boecherer, W. Idler, L. Schmalen, P. Schulte, and F. Steiner. Proceedings of ECOC 2015, European Conference on Optical Communication.



Dr. Georg Boecherer
T: +49 089 289 23458

The Technical University of Munich (TUM) is one of Europe's leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 39,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and Sao Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Moessbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

Technical University of Munich (TUM)

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...