Nav: Home

Studying microbes in the Sargasso Sea

December 15, 2015

A new initiative, supported by an anonymous $6 million grant, will foster collaborative research on the distinctive microbial communities that are the foundation of the ecosystem in the Sargasso Sea, an area that occupies two-thirds of the North Atlantic Ocean.

Craig Carlson, chair of UC Santa Barbara's Department of Ecology, Evolution and Marine Biology and an adjunct faculty member at the Bermuda Institute of Ocean Sciences (BIOS), will serve as director of the project.

Well known for research that links changes in dissolved organic matter to microbial activities in the Sargasso Sea, Carlson will coordinate the team of scientists from BIOS, UCSB, Oregon State University, Woods Hole Oceanographic Institution in Massachusetts and The University of Exeter in England.

"From a large biogeochemical perspective, we can really start to understand how microbial community structure helps produce and redistribute carbon in the ocean and vice versa," said Carlson.

The project will leverage the ocean measurements and ongoing research at the Bermuda Atlantic Time-series Study (BATS) site, employing new collaborations and technologies to scrutinize the ocean's smallest life forms. The team will focus on understanding what chemical compounds microbial communities produce, transform and leave behind, including through community interactions with viruses and zooplankton.

Phytoplankton, the ocean's floating forests of single-celled microbes, play a vital role in the ocean carbon cycle as they harness solar energy and transform carbon dioxide into the organic carbon that sustains marine food webs.

However, the ocean carbon cycle quickly adds up to a complex network of chemical reactions. The fate of a plankton cell's organic matter can take a circuitous path through the microbial food web, where more than a million bacterial cells in each drop of seawater colonize and consume organic material. The cells also are preyed upon by larger microbes or are attacked by viruses. The mix of dissolved organic carbon resulting from cells that have died intermingles with organic compounds deliberately secreted for cell-to-cell communication and defense mechanisms.

"It's a perfect storm of technology, expertise and study site," Carlson said. "We have a great track record working together at BIOS, and we're extremely excited about this opportunity to move the field forward."
-end-


University of California - Santa Barbara

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".