Nav: Home

Robotics to help blind and visually impaired to recognize objects

December 15, 2015

RENO, Nev. - A hand-worn robotic device is being developed that will help millions of blind and visually impaired people navigate past movable obstacles or assist in their ability to pre-locate, pre-sense and grasp an object.

In a collaboration between the University of Nevada, Reno and the University of Arkansas, Little Rock, researchers will develop new technology, with co-robotic functions currently unavailable in assistive devices, for the wearable robotic device. The team received an $820,000, three-year National Robotics Initiative grant from the National Institutes of Health's National Eye Institute division.

"The miniaturized system will contribute to the lives of visually impaired people by enabling them to identify and move objects, both for navigational purposes or for more simple things such as grasping a door handle or picking up a glass," Yantao Shen, assistant professor and lead researcher on the project from the University of Nevada, Reno's College of Engineering, said. "We will pre-map the hand, and build a lightweight form-fitting device that attaches to the hand using key locations for cameras and mechanical and electrical sensors. It will be simpler than a glove, and less obtrusive."

The technology will combine vision, tactile, force, temperature and audio sensors and actuators to help the wearer pre-sense an object - telling its location, feeling its shape and size - and then grasp it.

"The visual sensors, very high resolution cameras, will first notify the wearer of the location and shape, and the proximity touch sensors kick in as the hand gets closer to the object," Shen said. "The multiple sensors and touch actuators array will help to dynamically 'describe' the shape of the object to the hand when the hand is close to the object, allowing people with vision loss to have more independence and ability to navigate and to safely grasp and manipulate."

Shen and his research partner Cang Ye, a UALR professor in the Department of Systems Engineering, will guide their team of postdoctoral, graduate and undergraduate students as they develop the technology, design the device and test its usability. Shen will include the project in the senior design course he teaches, guiding students as they develop their own ideas for the device, and perhaps expand the technology past its original intentions.

"Not only will this device help blind and visually impaired people, the methods and technology we develop will have great potential in advancing small and wearable robot autonomy with many potential applications in space exploration, military surveillance, law enforcement and search and rescue," Shen said.

Associate Professor Shen, a recipient of a National Science Foundation CAREER Award, is director of the Lab for Bioinstrumentation and Automation in the Department of Electrical and Biomedical Engineering at his University. He leads the advanced manufacturing sector of the University's Nevada Advanced Autonomous Systems Innovation Center.

He conducts research in the areas of bioinstrumentation and automation, biomechatronics/robotics, sensors and actuators, and tactile/haptic interfaces. Shen has published more than 100 research papers in these fields. His research has been supported by federal agencies such as the National Science Foundation and NASA.

"This is a major nationally competitive project that will result in cutting-edge research," Manos Maragakis, dean of the College of Engineering, said. "It is a big success for Dr. Shen and a clear evidence of the continuous growth of our biomedical engineering and autonomous systems programs, which have become major areas of focus for the College of Engineering."
-end-
Note: Research reported in this publication was supported by the National Eye Institute of the National Institutes of Health under Award Number R01EY026275. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

University of Nevada, Reno

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
More Engineering News and Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...