Robotics to help blind and visually impaired to recognize objects

December 15, 2015

RENO, Nev. - A hand-worn robotic device is being developed that will help millions of blind and visually impaired people navigate past movable obstacles or assist in their ability to pre-locate, pre-sense and grasp an object.

In a collaboration between the University of Nevada, Reno and the University of Arkansas, Little Rock, researchers will develop new technology, with co-robotic functions currently unavailable in assistive devices, for the wearable robotic device. The team received an $820,000, three-year National Robotics Initiative grant from the National Institutes of Health's National Eye Institute division.

"The miniaturized system will contribute to the lives of visually impaired people by enabling them to identify and move objects, both for navigational purposes or for more simple things such as grasping a door handle or picking up a glass," Yantao Shen, assistant professor and lead researcher on the project from the University of Nevada, Reno's College of Engineering, said. "We will pre-map the hand, and build a lightweight form-fitting device that attaches to the hand using key locations for cameras and mechanical and electrical sensors. It will be simpler than a glove, and less obtrusive."

The technology will combine vision, tactile, force, temperature and audio sensors and actuators to help the wearer pre-sense an object - telling its location, feeling its shape and size - and then grasp it.

"The visual sensors, very high resolution cameras, will first notify the wearer of the location and shape, and the proximity touch sensors kick in as the hand gets closer to the object," Shen said. "The multiple sensors and touch actuators array will help to dynamically 'describe' the shape of the object to the hand when the hand is close to the object, allowing people with vision loss to have more independence and ability to navigate and to safely grasp and manipulate."

Shen and his research partner Cang Ye, a UALR professor in the Department of Systems Engineering, will guide their team of postdoctoral, graduate and undergraduate students as they develop the technology, design the device and test its usability. Shen will include the project in the senior design course he teaches, guiding students as they develop their own ideas for the device, and perhaps expand the technology past its original intentions.

"Not only will this device help blind and visually impaired people, the methods and technology we develop will have great potential in advancing small and wearable robot autonomy with many potential applications in space exploration, military surveillance, law enforcement and search and rescue," Shen said.

Associate Professor Shen, a recipient of a National Science Foundation CAREER Award, is director of the Lab for Bioinstrumentation and Automation in the Department of Electrical and Biomedical Engineering at his University. He leads the advanced manufacturing sector of the University's Nevada Advanced Autonomous Systems Innovation Center.

He conducts research in the areas of bioinstrumentation and automation, biomechatronics/robotics, sensors and actuators, and tactile/haptic interfaces. Shen has published more than 100 research papers in these fields. His research has been supported by federal agencies such as the National Science Foundation and NASA.

"This is a major nationally competitive project that will result in cutting-edge research," Manos Maragakis, dean of the College of Engineering, said. "It is a big success for Dr. Shen and a clear evidence of the continuous growth of our biomedical engineering and autonomous systems programs, which have become major areas of focus for the College of Engineering."
-end-
Note: Research reported in this publication was supported by the National Eye Institute of the National Institutes of Health under Award Number R01EY026275. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

University of Nevada, Reno

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.