Pitt physicist gets grant to investigate condensed matter and atomic-optical physics

December 15, 2015

PITTSBURGH--Pitt physicist Wensheng Vincent Liu has received a five-year $1.42 million grant from the Air Force Office of Scientific Research to predict and understand topological phases of quantum atomic matter (i.e., a cold ensemble of interacting atoms) under novel conditions, well beyond the standard regimes. Liu is a professor in the Department of Physics and Astronomy within the Kenneth P. Dietrich School of Arts and Sciences.

While the research is theoretical in nature, the findings are expected to motivate and guide ongoing and future experiments in atomic, molecular, and optical physics, as well as provide the models for engineering novel electronic materials of the desired quantum properties in condensed matter physics. The acquired new knowledge has the potential to find applications in the future generation of precision quantum-based devices and possibly topological quantum computers and communication technology.

Trapping ultracold atoms in optical lattices has come a long way, Liu says. A popular trend has been to use atoms to emulate condensed matter physics of electrons in solid-state materials. "But this project will venture into some unconventional directions that will enable us to study exciting, unique aspects of no prior analogue in solids, hence beyond the standard quantum regime," he says. "A whole new world of exotic states is expected to appear."

Research has flourished at the interdisciplinary frontier of the fields of condensed matter physics and atomic-molecular-optical (AMO) physics. This interface area is now widely known as cold atom physics. Physicists have developed advanced experimental techniques to trap atoms and cool them down to below a few hundred degrees of nano-Kelvin. This represents the coldest temperature regime that scientists have ever achieved. Each of these alkali-metal atoms are typically several thousand times more massive than an electron. Unlike electrons, the massive atoms do not exhibit appreciable quantum effects at room temperature, not even at the liquid nitrogen temperature. They behave fully quantum once cooled down to ultralow temperature.

The world of quantum particles behaves entirely different than the classical world. One simple consequence is that each atom at such a low temperature acts as both a wave and particle at the same time, Liu says. For the wave part, they can form interference and organize together like atom laser. "Atom laser" is a coherent matter wave, one of the most remarkable effects achieved and demonstrated in the recent years in the lab of this field.

Atoms also interact with light, and physicists have found ways to use laser beams to form light crystals to trap and manipulate the atoms. These are now widely called "optical lattices." When trapping thousands and millions of such atoms in optical lattices in the lab, one creates an interacting quantum atomic matter. A number of other interesting many-body quantum phenomena are discovered or predicted. The optical lattices turn out to be one of the most flexible physical systems. It shows unprecedented tunability through manipulating the configurations of laser beams. The research so far appears to have just scratched the surface of a field of seemingly infinite potential and possibilities.

"A whole new world of many more fascinating many-body quantum phases are waiting to be discovered," Liu says.

University of Pittsburgh

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.