Nav: Home

New step toward determining the cause of MS

December 15, 2015

Researchers at the University of Toronto have found another clue in understanding the cause of what drives Multiple Sclerosis (MS) disease. Their findings were published today in Immunity.

MS is a disorder in which the immune system attacks the brain. It has no known cause and no cure. Normally, immune responses are triggered in lymph nodes and other lymphoid organs to protect us from a virus or pathogen. However, scientists have observed that a type of white blood cell known as lymphocytes can sometimes congregate into so-called "tertiary lymphoid tissues (TLTs)" in the brain of MS patients. These structures are similar to lymph nodes, but are found within the outer membrane of the brain - known as the meninges. They often coincide with the appearance of tell-tale brain inflammation associated with progressive MS. But how the TLTs are formed and what keeps them there has been unclear.

The U of T researchers, led by Professor Jen Gommerman of the Department of Immunology, discovered that TLTs were created by the presence of stromal cells, which are specialized cells that produce an intricate network of fibres. They can effectively create a net, which once formed, become a gathering place for a type of T cell known as T helper 17 cell (or Th17).

"While T cells are an important part of the body's ability to ward off infection and disease, in autoimmune disorders, they can mistake healthy tissue for potential threats and respond by lashing out, causing damage. The team observed that this Th17 response resulted in the type of brain tissue inflammation associated with MS," says Gommerman.

More than that, the Th17 cells could also influence how the stromal cells organized. The resulting structure that developed was remarkably similar to normal lymphatic tissue, such as you might find in your tonsils or lymph nodes in your neck.

Gommerman says this research, which was conducted using animal modeling, doesn't deliver a definitive answer to what causes MS, but it does appear to be a "smoking gun" associated with MS pathology. With further research, it may point to potential treatment options, such as targeted Th17 blockers.
-end-
The lead author of the paper, Natlia Pikor, recently completed her PhD under Gommerman's supervision. This project is part of a larger initiative exploring B cells in MS, which is supported by a team grant from the MS Society of Canada and affiliated Multiple Sclerosis Scientific Research Foundation. With Gommerman, it includes fellow primary investigators, neurologists Professor Amit Bar-Or at McGill University and Professor Alexandre Prat at l'Université de Montréal.

University of Toronto

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...