Not 'junk' anymore: Obscure DNA has key role in stroke damage

December 15, 2015

MADISON, Wis. -- A study of rats released today shows that blocking a type of RNA produced by what used to be called "junk DNA" can prevent a significant portion of the neural destruction that follows a stroke. The research points toward a future treatment for post-stroke damage, which is often more extensive than the initial destruction that results when blood to the brain is temporarily shut off.

The research also links two mysteries: Why does the majority of damage follow the restoration of blood supply? And what is the role of the vast majority of the human genome, which was once considered junk because it does not pattern for the RNA that makes proteins?

"Less than 2 percent of the RNAs formed from the genome code for proteins, leaving 98 percent that we call 'noncoding RNA,'" says senior author Raghu Vemuganti, a professor of neurological surgery at the University of Wisconsin-Madison.

In the study just published in the Journal of Neuroscience, Vemuganti and colleagues blocked one variety of long noncoding RNA (lncRNA), which exists in at least 40,000 unique varieties -- possibly as many as 100,000.

"This lncRNA can bind to other RNA, to a protein, or to a protein on one side and DNA on the other," says first author Suresh Mehta, a scientist in the Department of Neurological Surgery. "Among many other jobs, lncRNAs can regulate gene activity."

"Stroke influences the expression of all types of RNA, and this RNA has a broad influence throughout the cell after the blood supply is restored, in what we call reperfusion injury" says Vemuganti. "A few years ago, our lab started to look at how stroke affects noncoding RNA. Two years ago, we identified about 200 types of various lncRNAs that greatly increase or decrease after stroke, and zeroed in on one that we named FosDT.

"We knew that the level of FosDT went up more than tenfold in the rat brain within three hours after the stroke," adds Vemuganti. "We thought, if we block FosDT after the stroke, would it make any difference in the amount of structural damage or behavioral disability?"

Vemuganti and his colleagues designed three custom-made strands of RNA to silence FosDT, injected them into the rats, and deliberately shut off one artery in the brain for one hour. Tests performed within the first week showed that the treated rats regained motor skills much faster and more completely than control animals. Brain scans showed a significant reduction in the total volume of brain that was destroyed by the stroke.

These studies were partially funded by the American Heart Association, National Institutes of Health, U.S. Department of Veterans Affairs and the Department of Neurological Surgery.

Further investigation showed that FosDT stimulates a pathway to cell death, while also impairing cell-survival pathways. Interfering with both mechanisms could explain the benefits, says Mehta.

"We did not change the initial insult, caused by lack of oxygen," says Vemuganti, "but this targeted approach greatly reduced the damage after one week. We cannot completely reverse the post-stroke damage, but the total damage decreased by one-third. If we can protect this much brain tissue from stroke, that would be an enormous improvement."

Because post-stroke damage (the "reperfusion injury") can be even more disabling than harm caused by the initial loss of blood flow, Vemuganti says he is pursuing several lines of research. "We are further exploring the mechanism, and we are preparing to see what happens after a stroke in rats that have no gene for FosDT."

Although rates of stroke have fallen in recent decades, about 795,000 Americans have a stroke each year, and stroke remains among the leading causes of disability.

"We intend to vigorously pursue this finding," Vemuganti said.
David Tenenbaum, 608-265-8549,

University of Wisconsin-Madison

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to