Nav: Home

Biodegradable polymer coating for implants

December 15, 2016

Medical implants often carry surface substrates that release ac-tive substances or to which biomolecules or cells can adhere better. However, degradable gas-phase coatings for degradable implants, such as surgical suture materials or scaffolds for tis-sue culturing, have been lacking so far. In the journal An-gewandte Chemie, researchers of Karlsruhe Institute of Technol-ogy now present a polymer coating that is degraded in the body together with its carrier. (DOI:10.1002/ange.201609307)

"Our new degradable polymer films might be applied for functionali-zation and coating of surfaces in biosciences, medicine, or food packaging," says Professor Joerg Lahann, Co-Director of the Insti-tute of Functional Interfaces of Karlsruhe Institute of Technology (KIT). Together with an international team, he produced polymer films with functional groups as "anchor sites" for fluorescent dyes or biomolecules.

For the first time, the researchers present a CVD (chemical vapor deposition) method to produce biodegradable polymers. Via spe-cial side groups, biomolecules or active substances can be at-tached. This opens up new potentials for e.g. coating biodegrada-ble implants. Polymerization by chemical vapor deposition is a sim-ple and widely used method to modify surfaces, by means of which also complex and irregular carrier substrates can be coated homo-geneously with polymers.

In CVD polymerization, the initial compounds are evaporated, acti-vated at high temperature, and deposited onto surfaces, where they polymerize. However, so far it has been possible to coat permanent implants only. Coating has been impossible for materials that are to be degraded after fulfilling their tasks, such as surgical suture mate-rials, systems for the controlled release of substances, stents re-leasing medical substances or scaffolds for culturing tissue. Bio-degradable coatings could not be produced by CVD.

Now, this gap is closed, as scientists of Karlsruhe Institute of Tech-nology, University of Michigan (Ann Arbor, USA), and Northwestern Polytechnical University (Xi'an, China) for the first time synthesized a CVD polymer with a degradable backbone. The team applied co-polymerization of two special monomer types: The para-cyclophanes usually used for this method were combined with cy-clic ketene acetals. While classical polymers on the basis of para-cyclophanes are linked by carbon-carbon bonds exclusively, ketene acetal is repositioned during polymerization, such that ester bonds (e.g. bonds between carbon and oxygen atoms) are formed in the polymer backbone. Ester bonds can be cleaved in aqueous medi-um.

"The degradation rate depends on the ratio of both monomer types and on the side groups of the monomers," Lahann explains. "Polar side groups make the polymer film less water-repellent and acceler-ate degradation, as water can enter more easily. In this way, the degradation rate can be adapted to application." Using cell cultures, the researchers already demonstrated that neither the polymer nor its degradation products are toxic.
-end-
Xie, F., Deng, X., Kratzer, D., Cheng, K. C. K., Friedmann, C., Qi, S., Solorio, L. and Lahann, J. (2016), Backbone-Degradable Poly-mers Prepared by Chemical Vapor Deposition. Angew. Chem. DOI:10.1002/ange.201609307.

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

Karlsruher Institut für Technologie (KIT)

Related Polymers Articles:

Researcher develops method to change fundamental architecture of polymers
A Florida State University research team has developed methods to manipulate polymers in a way that changes their fundamental structure, paving the way for potential applications in cargo delivery and release, recyclable materials, shape-shifting soft robots, antimicrobials and more.
Bottom-up synthesis of crystalline 2D polymers
Scientists at TU Dresden and Ulm University have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time.
Secret messages hidden in light-sensitive polymers
Scientists from the CNRS and Aix-Marseille Université have recently shown how valuable light-sensitive macromolecules are: when exposed to the right wavelength of light, they can be transformed so as to change, erase or decode the molecular message that they contain.
Successful application of machine learning in the discovery of new polymers
As a powerful example of how artificial intelligence (AI) can accelerate the discovery of new materials, scientists in Japan have designed and verified polymers with high thermal conductivity -- a property that would be the key to heat management, for example, in the fifth-generation (5G) mobile communication technologies.
How to capture waste heat energy with improved polymers
By one official estimate, American manufacturing, transportation, residential and commercial consumers use only about 40 percent of the energy they draw on, wasting 60 percent.
More Polymers News and Polymers Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...