Nav: Home

Macromolecules: Light to design precision polymers

December 15, 2016

Chemists of Karlsruhe Institute of Technology (KIT) have succeeded in specifically controlling the setup of precision polymers by light-induced chemical reactions. The new method allows for the precise, planned arrangement of the chain links, i.e. monomers, along polymer chains of standard length. The precisely structured macromolecules develop defined properties and may possibly be suited for use as storage systems of information or synthetic biomolecules. This novel synthesis reaction is now reported in open-access Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemical reactions may be triggered by light at room temperature. This effect was used by KIT scientists to specifically link molecules to defined polymer chains under light. "In many conventional processes, polymer chains of variable length are produced. The building blocks are arranged randomly along the chain," says Professor Christopher Barner-Kowollik of the KIT Institute for Chemical Technology and Polymer Chemistry (ITCP). "We wanted to develop a light-induced method for polymer structuring, which reaches the precision of nature," the Holder of the Chair for Preparative Macromolecular Chemistry adds. The models in nature, e.g. proteins, have an exactly defined structure. The new, light-induced synthesis method allows for customized molecule design, with the building blocks being arranged at the positions desired similar to a string of colored pearls.

"By controlling the structure of the molecule, the so-called sequence, properties of macromolecules can be controlled," Barner-Kowollik says. "Sequence-defined polymers might also be used as molecular data and information storage systems." Information might be encoded by the sequence of monomers, similar to the genetic information of the DNA.

The team of Barner-Kowollik now presents the new light-induced and highly precise polymerization method in Nature Communications under the heading of "Coding and Decoding Libraries of Sequence Defined Functional Copolymers Synthesized via Photoligation." The developers expect the fundamental method to become a tool for chemists, biologists, and materials scientists and to be the key to future macromolecular chemistry.

The new method was developed under the Collaborative Research Center 1176 "Molecular Structuring of Soft Matter" which is funded by the German Research Foundation (DFG) and coordinated by KIT. For the first four years, a budget of EUR 9 million is available to the Collaborative Research Center that started in January 2016.
-end-
Nicolas Zydziak, Waldemar Konrad, Florian Feist, Sergii Afonin, Steffen Weidner, and Christopher Barner-Kowollik: Coding and Decoding Libraries of Sequence Defined Functional Copolymers Synthesized via Photoligation. DOI: 10.1038/NCOMMS13672

More information:

https://www.kit.edu/kit/english/pi_2015_143_specifically-controlling-the-structure-of-macromolecules.php

https://www.kit.edu/kit/english/pi_2016_091_switching-chemical-reactions-with-light.php

Kosta Schinarakis, PKM - Science Scout, Phone: +49 721 608 41956, Fax: +49 721 608 43658, Email: schinarakis@kit.edu

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT - The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

Karlsruher Institut für Technologie (KIT)

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...