Nav: Home

How brain tissue recovers after injury

December 15, 2016

A research team led by Associate Professor Mitsuharu ENDO and Professor Yasuhiro MINAMI (both from the Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University) has pinpointed the mechanism underlying astrocyte-mediated restoration of brain tissue after an injury. This could lead to new treatments that encourage regeneration by limiting damage to neurons incurred by reduced blood supply or trauma. The findings were published on October 11 in the online version of GLIA ahead of print release in January 2017.

When the brain is damaged by trauma or ischemia (restriction in blood supply), immune cells such as macrophages and lymphocytes dispose of the damaged neurons with an inflammatory response. However, an excessive inflammatory response can also harm healthy neurons.

Astrocytes are a type of glial cell*, and the most numerous cell within the human cerebral cortex. In addition to their supportive role in providing nutrients to neurons, studies have shown that they have various other functions, including the direct or active regulation of neuronal activities.

It has recently become clear that astrocytes also have an important function in the restoration of injured brain tissue. While astrocytes do not normally proliferate in healthy brains, they start to proliferate and increase their numbers around injured areas and minimize inflammation by surrounding the damaged neurons, other astrocytes, and inflammatory cells that have entered the damaged zone. Until now the mechanism that prompts astrocytes to proliferate in response to injury was unclear.

The research team focused on the fact that the astrocytes which proliferate around injured areas acquire characteristics similar to neural stem cells. The receptor tyrosine kinase Ror2, a cell surface protein, is highly expressed in neural stem cells in the developing brain. Normally the Ror2 gene is "switched off" within adult brains, but these findings showed that when the brain was injured, Ror2 was expressed in a certain population of the astrocytes around the injured area.

Ror2 is an important cell-surface protein that regulates the proliferation of neural stem cells, so the researchers proposed that Ror2 was regulating the proliferation of astrocytes around the injured areas. They tested this using model mice for which the Ror2 gene did not express in astrocytes. In these mice, the number of proliferating astrocytes after injury showed a remarkable decrease, and the density of astrocytes around the injury site was reduced. Using cultured astrocytes, the team analyzed the mechanism for activating the Ror2 gene, and ascertained that basic fibroblast growth factor (bFGF) can "switch on" Ror2 in some astrocytes.

This research showed that in injured brains, the astrocytes that show (high) expression of Ror2 induced by bFGF signal are primarily responsible for starting proliferation. bFGF is produced by different cell types, including neurons and astrocytes in the injury zone that have escaped damage. Among the astrocytes that received these bFGF signals around the injury zone, some express Ror2 and some do not. The fact that proliferating astrocytes after brain injury are reduced during aging raises the possibility that the population of astrocytes that can express Ror2 might decrease during aging, which could cause an increase in senile dementia. Researchers are aiming to clarify the mechanism that creates these different cell populations of astrocytes.

By artificially controlling the proliferation of astrocytes, in the future we can potentially minimize damage caused to neurons by brain injuries and establish a new treatment that encourages regeneration of damaged brain areas.
-end-
*Glial cell: a catch-all term for non-neuronal cells that belong to the nervous system. They support neurons in various roles.

Kobe University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.