Nav: Home

Immunotherapy for cancer: New method identifies target antigens by mass spectrometry

December 15, 2016

New cancer therapies harness the immune system to fight tumors. One of the main principles behind these therapies is to find out precisely which molecules on cancer cells trigger an immune response. A team at the Technical University of Munich (TUM) and the Max Planck Institute of Biochemistry has for the first time identified suitable protein structures directly from patients' tumor cells. Unlike former approaches, their method does not rely on prediction algorithms but makes use of mass spectrometry. The procedure therefore opens up new possibilities for individualized targeted cancer treatments.

Through evolution, the immune system has developed sophisticated mechanisms for fighting illnesses associated with viruses and tumors. T cells play an important role in this setting. They can identify small protein structures, known as peptides, on cells. The body's own cells "present" the peptides on their surface and thus offer information about molecules on the inside. Individual peptides may, for example, indicate a viral infection or a mutation - the latter being a characteristic of tumor cells. Peptides identified by immune cells are known as antigens. T cells that recognize antigens can trigger a reaction that destroys the targeted cells.

In recent years research teams, including TUM researchers, have successfully utilized this characteristic for cancer treatments. Different approaches have emerged. Vaccinating a patient with an antigen can stimulate the body to enhance the production of specific T cells. Another possibility is to enrich T cells that are "trained" for certain antigens and transfer them to the patient.

In both cases, it is important to know which antigens derived from viruses or tumors may be recognized by the T cells. Many different peptides can be found on the body's own cells and cancer cells. Consequently, the pool of potential candidates when searching for suitable antigens is very large. The authors of the new study identified approximately 100,000 different peptides from tumor tissue samples derived from only 25 melanoma patients. The T cells are particularly good at identifying peptides on tumor cells with mutations, i.e. structural changes. The peptides that mutate and the type of mutations they undergo generally varies from one patient to another.

Time-consuming and error-prone search for antigens

In the past, the search for mutated peptides actually presented on the tumor was a time-consuming and error-prone process. Scientists had to start by sequencing the DNA from tumor cells. That process alone takes one to two weeks. The sequencing data is then fed into prediction algorithms to determine which mutated peptides might be found on the surface of the cell. Subsequently, time-consuming laboratory experiments had to be performed in order to find out whether these molecules actually existed and were presented on the cell surface.

An alternative to this process has now been developed by a team led by Angela M. Krackhardt, professor of translational immunotherapy at the Third Medical Clinic at TUM's Klinikum rechts der Isar, and Professor Matthias Mann of the Department of Proteomics and Signal Transduction at the Max Planck Institute of Biochemistry. Krackhardt and Mann have described their approach in an article published in the journal Nature Communications. Unlike other methods, it is not based on predictive models. Instead, the scientists use a mass spectrometer to identify the peptides actually present on the tumor surface.

Accurate and time-saving

The genomic sequence, or blueprint, of the tumor cells is also required for the new method. At the same time, surface structures of the malignant cell - in this case presented peptides - are removed directly from tumor tissue and investigated by mass spectrometry. Combining both analyses by bioinformatics results in the identification of mutated antigens actually presented on the cells with considerable accuracy.

The team headed by Krackhardt and Mann was also able to demonstrate the clinical relevance of the new method: In the blood of melanoma patients they found T cells that recognized tumor cells by means of antigens identified with mass spectrometry.

The new approach offers numerous advantages. By avoiding time-consuming simulations and laboratory experiments, information on mutated peptides on the tumor cells is much faster available. "For the first time, we have used the mass spectrometer to investigate not just expanded, cells, but rather heterogeneous tumor tissues of real patients," adds Matthias Mann. "That gives us much more detailed information about the molecular characteristics of the tumor." Moreover, the method is highly sensitive. The results of the study are already serving as the starting point for promising research initiatives, for example on the role of phosphorylated peptides.

Angela Krackhardt sees no major obstacles for clinical application of the method. "Our approach opens up new possibilities for the personalized treatment of cancer," says Krackhardt. "Identification of suitable antigens by this method will allow us to provide individualized vaccines or adoptive T-cell therapies for our patients within weeks to a few months."
-end-
Publication:

M. Bassani-Sternberg, E. Bräunlein, R. Klar, T. Engleitner, P. Sinitcyn, S. Audehm, M. Straub, J. Weber, J. Slotta-Huspenina, K. Specht, M.E. Martignoni, A. Werner, R. Hein, D. Busch, C. Peschel ,R. Rad, J. Cox, M. Mann, A.M. Krackhardt. "Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry". Nat Commun. 2016 Nov 21;7:13404.

Contact:

Prof. Dr. med. Angela Krackhardt
Translationale Immuntherapie
III. Medizinische Klinik
Klinikum rechts der Isar
Technical University of Munich
Tel.: +49 89 /4140-4124
E-Mail: angela.krackhardt@tum.de

Technical University of Munich (TUM)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...