Nav: Home

Attractive drug candidate identified to target glioma brain tumors

December 15, 2016

BIRMINGHAM, Ala. - In a paper published today in Cancer Research, researchers: 1) identify a biomarker enzyme associated with aggressive glioma brain tumors, 2) reveal the regulatory mechanism for that enzyme, and 3) demonstrate potent efficacy, using a mouse model of glioma, for a small molecule inhibitor they have developed.

The inhibitor, GA11, retains a core structure that resembles natural inhibitors of the biomarker enzyme; but the inhibitor has been modified to help it pass through the blood-brain barrier.

"In principle, both these features make GA11 an attractive drug candidate to target glioma stem-like cells in glioblastoma multiforme tumors," said Ichiro Nakano, M.D., Ph.D., and colleagues in the paper.

Nakano, a professor of neurosurgery and academic neurosurgeon at the University of Alabama at Birmingham, and Vito Coviello and Concettina La Motta, University of Pisa, Italy, are doing further preclinical evaluation of the GA11 and its analogs.

Glioblastoma multiforme, or GBM, is a formidable cancer foe. Only two therapeutic improvements have appeared in the past 30 years, increasing the average survival of patients from five months to 15 or 16 months, Nakano says.

A GBM tumor is a mix of different cells that respond differently to therapies. Small numbers of glioma stem-like cells, or GSCs, drive the tumorigenicity of GBM and thus are prime targets for possible treatments. One GSC subtype called the mesenchymal GSC is more malignant and the most therapy-resistant, so Nakano and fellow researchers reasoned that identifying the regulatory molecules active in mesenchymal GSCs might lead to novel and effective therapeutics.

Study details

Nakano and colleagues found that one form of the enzyme aldehyde dehydrogenase -- ALDH1A3 -- is a specific marker for mesenchymal GSCs, and his group is the first to show that, among the heterogeneous mix of cells in a GBM tumor, cells with high levels of ALDH1A3 expression were more tumorigenic in vivo than are cells that are low in ALDH1A3.

The researchers also found that the FOXD1 transcription factor regulates the production of ALDH1A3 in mesenchymal GSCs. In clinical samples of high-grade gliomas from patients, the expression levels of both FOXD1 and ALDH1A3 were inversely correlated with disease progression -- gliomas with high levels were more rapidly fatal than were gliomas with low levels.

Astonishingly, the same mechanism that drives the mesenchymal GSC tumorigenicity in humans acts in an evolutionarily distant organism, the fruit fly. Knocking down the expression of either the fruit fly version of the FOXD1 gene or the fruit fly version of ALDH1A3 blocks the formation of brain tumors in a brain cancer model of the fruit fly species Drosophila melanogaster, the researchers found. Thus, this signaling has been highly conserved in evolution.

The FOXD1 transcription factor is normally active during development from a fertilized egg and embryo to a fetus, and it is silent after birth. The role of FOXD1 in GBM, Nakano and colleagues say, suggests that the mesenchymal GSCs have hijacked the molecular mechanism of normal embryonic development to promote tumor growth.

In preclinical testing, GA11 was validated several ways. The researchers showed that it inhibited ALDH in yeast, reduced ALDH1 activity in cell-culture spheres of mesenchymal GSCs, inhibited proliferation of glioma spheres in cell culture, and inhibited xenograft growth of GBM in mouse brains.

"In conclusion," Nakano and fellow researchers wrote, "the FOXD1-ALDH1A3 axis is critical for tumor initiation in mesenchymal GSCs, therefore providing possible new molecular targets for the treatment of GBM and other ALDH1-activated cancers."

Nakano says his study of the role of GSCs in GBM is just one approach to treat glioma tumors. Other labs are pursuing immunotherapy, the use of check-point inhibitors, vaccination and efforts to increase sensitivity to radiotherapy.

It will take combined therapies to treat glioblastoma, Nakano says. "We don't believe that one therapy will be effective."

Nakano expects to launch a new clinical trial for glioblastoma in 2017, in conjunction with Burt Nabors, M.D., professor of neurology at UAB. Nakano says UAB will be the only site in the Deep South for this unique trial aimed at a molecular target in glioma stem cells, a target that is different from the ones described in the Cancer Research paper. The referral contact to Nakano's service will be Lydia P. Harrell.

The Nakano lab is also working on brain metastases, tumors that spread into the brain from other parts of the body. Similar to high-grade gliomas, which originate in the brain, these metastatic brain tumors are lethal, and there are very few therapeutic options. Nakano believes the core stem cell genes and signaling pathways are shared between gliomas and brain metastases.

"If so," he said, "the molecular targets identified for gliomas are most likely essential in brain metastases. Studies are underway, and similar to the glioma therapy development, I am working to develop clinical trials for brain metastasis, together with medical oncologists Mansoor Saleh, M.D., Andres Forero, M.D., and others at UAB."
-end-
Besides Nakano, Coviello and La Motta, authors of the Cancer Research paper, "FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells," are Peng Cheng, Jia Wang, Zhuo Zhang, Sung-Hak Kim, Marat S. Pavlyukov and Mutsuko Minata, UAB Department of Neurosurgery and Comprehensive Cancer Center; Indrayani Waghmare and Madhuri Kango-Singh, Department of Biology, University of Dayton, Ohio; Stefania Sartini, Department of Pharmacy, University of Pisa, Italy; Ahmed Mohyeldin, Department of Neurological Surgery and the James Comprehensive Cancer Center, The Ohio State University; Claudia L.L. Valentim, Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic; Rishi Raj Chhipa and Biplab Dasgupta, Department of Oncology, Cincinnati Children's Hospital Medical Center; and Krishna P.L. Bhat, Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston.

University of Alabama at Birmingham

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...