Attractive drug candidate identified to target glioma brain tumors

December 15, 2016

BIRMINGHAM, Ala. - In a paper published today in Cancer Research, researchers: 1) identify a biomarker enzyme associated with aggressive glioma brain tumors, 2) reveal the regulatory mechanism for that enzyme, and 3) demonstrate potent efficacy, using a mouse model of glioma, for a small molecule inhibitor they have developed.

The inhibitor, GA11, retains a core structure that resembles natural inhibitors of the biomarker enzyme; but the inhibitor has been modified to help it pass through the blood-brain barrier.

"In principle, both these features make GA11 an attractive drug candidate to target glioma stem-like cells in glioblastoma multiforme tumors," said Ichiro Nakano, M.D., Ph.D., and colleagues in the paper.

Nakano, a professor of neurosurgery and academic neurosurgeon at the University of Alabama at Birmingham, and Vito Coviello and Concettina La Motta, University of Pisa, Italy, are doing further preclinical evaluation of the GA11 and its analogs.

Glioblastoma multiforme, or GBM, is a formidable cancer foe. Only two therapeutic improvements have appeared in the past 30 years, increasing the average survival of patients from five months to 15 or 16 months, Nakano says.

A GBM tumor is a mix of different cells that respond differently to therapies. Small numbers of glioma stem-like cells, or GSCs, drive the tumorigenicity of GBM and thus are prime targets for possible treatments. One GSC subtype called the mesenchymal GSC is more malignant and the most therapy-resistant, so Nakano and fellow researchers reasoned that identifying the regulatory molecules active in mesenchymal GSCs might lead to novel and effective therapeutics.

Study details

Nakano and colleagues found that one form of the enzyme aldehyde dehydrogenase -- ALDH1A3 -- is a specific marker for mesenchymal GSCs, and his group is the first to show that, among the heterogeneous mix of cells in a GBM tumor, cells with high levels of ALDH1A3 expression were more tumorigenic in vivo than are cells that are low in ALDH1A3.

The researchers also found that the FOXD1 transcription factor regulates the production of ALDH1A3 in mesenchymal GSCs. In clinical samples of high-grade gliomas from patients, the expression levels of both FOXD1 and ALDH1A3 were inversely correlated with disease progression -- gliomas with high levels were more rapidly fatal than were gliomas with low levels.

Astonishingly, the same mechanism that drives the mesenchymal GSC tumorigenicity in humans acts in an evolutionarily distant organism, the fruit fly. Knocking down the expression of either the fruit fly version of the FOXD1 gene or the fruit fly version of ALDH1A3 blocks the formation of brain tumors in a brain cancer model of the fruit fly species Drosophila melanogaster, the researchers found. Thus, this signaling has been highly conserved in evolution.

The FOXD1 transcription factor is normally active during development from a fertilized egg and embryo to a fetus, and it is silent after birth. The role of FOXD1 in GBM, Nakano and colleagues say, suggests that the mesenchymal GSCs have hijacked the molecular mechanism of normal embryonic development to promote tumor growth.

In preclinical testing, GA11 was validated several ways. The researchers showed that it inhibited ALDH in yeast, reduced ALDH1 activity in cell-culture spheres of mesenchymal GSCs, inhibited proliferation of glioma spheres in cell culture, and inhibited xenograft growth of GBM in mouse brains.

"In conclusion," Nakano and fellow researchers wrote, "the FOXD1-ALDH1A3 axis is critical for tumor initiation in mesenchymal GSCs, therefore providing possible new molecular targets for the treatment of GBM and other ALDH1-activated cancers."

Nakano says his study of the role of GSCs in GBM is just one approach to treat glioma tumors. Other labs are pursuing immunotherapy, the use of check-point inhibitors, vaccination and efforts to increase sensitivity to radiotherapy.

It will take combined therapies to treat glioblastoma, Nakano says. "We don't believe that one therapy will be effective."

Nakano expects to launch a new clinical trial for glioblastoma in 2017, in conjunction with Burt Nabors, M.D., professor of neurology at UAB. Nakano says UAB will be the only site in the Deep South for this unique trial aimed at a molecular target in glioma stem cells, a target that is different from the ones described in the Cancer Research paper. The referral contact to Nakano's service will be Lydia P. Harrell.

The Nakano lab is also working on brain metastases, tumors that spread into the brain from other parts of the body. Similar to high-grade gliomas, which originate in the brain, these metastatic brain tumors are lethal, and there are very few therapeutic options. Nakano believes the core stem cell genes and signaling pathways are shared between gliomas and brain metastases.

"If so," he said, "the molecular targets identified for gliomas are most likely essential in brain metastases. Studies are underway, and similar to the glioma therapy development, I am working to develop clinical trials for brain metastasis, together with medical oncologists Mansoor Saleh, M.D., Andres Forero, M.D., and others at UAB."
-end-
Besides Nakano, Coviello and La Motta, authors of the Cancer Research paper, "FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells," are Peng Cheng, Jia Wang, Zhuo Zhang, Sung-Hak Kim, Marat S. Pavlyukov and Mutsuko Minata, UAB Department of Neurosurgery and Comprehensive Cancer Center; Indrayani Waghmare and Madhuri Kango-Singh, Department of Biology, University of Dayton, Ohio; Stefania Sartini, Department of Pharmacy, University of Pisa, Italy; Ahmed Mohyeldin, Department of Neurological Surgery and the James Comprehensive Cancer Center, The Ohio State University; Claudia L.L. Valentim, Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic; Rishi Raj Chhipa and Biplab Dasgupta, Department of Oncology, Cincinnati Children's Hospital Medical Center; and Krishna P.L. Bhat, Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston.

University of Alabama at Birmingham

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.