Nav: Home

Cancer breakthrough miniature device shows which drugs perform best against tumors

December 15, 2016

"...the device allows early assessment of the effects of drugs, speeding up the adoption of those that are shown to be therapeutically effective..."

"...while there have been major improvements in knowledge of cancer cell biology, clinical approval of new drugs has not kept pace until now..."

RESEARCHERS at the University of Huddersfield have helped develop a lab device that could speed up the adoption of new anti-cancer treatments.

It is a small, versatile and simple-to-use microfluidic system that consists of a series of chambers, enabling scientists to monitor the response of hypoxic cells - deficient in oxygen and therefore resistant to therapy - when drugs are introduced.

Professor Roger Phillips and Dr Simon Allison at the University of Huddersfield formed a collaboration with researchers in Spain - based at institutions that include the Aragon Institute of Biomedical Research - after meeting them during a project that involved a UK scientific instrument-making company.

This led to research and development of the new microfluidic device, now described in an article, with Professor Phillips and Dr Allison among the co-authors. Titled Development and characterisation of a microfluidic model of the tumour microenvironment, it appears in Scientific Reports, from the publishers of leading journal Nature.

Professor Phillips is a specialist in the evaluation of new anti-cancer drugs, with a specific interest in the micro environments surrounding tumours as a target for drug development. He explained that the advantage of the new device - made of glass or plastic - is that it enables researchers to visualise the micro environment and monitor how cells respond in real time to the drug being tested.

Also, the test cells - after being grown in the lab - can be spheroid, as opposed to the flat "2D" cells normally relied on by researchers. The "3D" nature of cells inside the microfluidic device means that it is possible to visualise what is happening to them internally.

"We can see the drugs moving in, and see hypoxia developing in the centre," said Professor Phillips, who added that the new system could also be used for a wide range of other applications.

One of the conclusions of the article in Scientific Reports is that while there have been major improvements in knowledge of cancer cell biology, clinical approval of new drugs has not kept pace. One strategy in response is to "develop new in vitro preclinical models that are better predictors of success in advanced preclinical and clinical testing".

Now the microfluidic device will help address the urgent need for a new in vitro model able to mimic key aspects of the tumour microenvironment and therefore allow early assessment of the effects of drugs, speeding up the adoption of those that are shown to be therapeutically effective.

University of Huddersfield

Related Microfluidic Device Articles:

New microfluidic device minimizes loss of high value samples
A major collaborative effort that has been developing over the last three years between Arizona State University and European scientists, has resulted in a significant technical advance in X-ray crystallographic sample strategies.
Microfluidic chip technology enables rapid multiplex diagnosis of plant viral diseases
Toyohashi University of Technology has applied a microfluidic chip technology to develop a multiplex genetic diagnostic device for the early detection and prevention of crop diseases.
Heart attack on a chip: Scientists model conditions of ischemia on a microfluidic device
Researchers invented a microfluidic chip containing cardiac cells that is capable of mimicking hypoxic conditions following a heart attack - specifically when an artery is blocked in the heart and then unblocked after treatment.
SUTD's novel approach allows 3D printing of finer, more complex microfluidic networks
The biomedical industry, involving the engineering of complex tissue constructs and 3D architecture of blood vessels, is one of the key industries to benefit from SUTD's new development.
Pre-programmed microfluidic systems offer new control capabilities
Northwestern University researchers have discovered how to pre-program microfluidic systems in a way that controls how fluids flow and mix throughout the micropipes.
SUTD researchers develop a rapid, low-cost method to 3D print microfluidic devices
Current 3D printed microfluidics are limited by multiple factors, such as available materials for 3D printing (e.g. optical transparency, flexibility, biocompatibility), achievable dimensions of microchannels by commercial 3D printers, integration of 3D printed microfluidics with functional materials or substrates.
Microfluidic array catches, holds single cervical cells for faster screening
Several screening tests for cervical cancer have been developed in recent years.
RIT professor develops microfluidic device to better detect Ebola virus
A faculty-researcher at Rochester Institute of technology has developed a prototype micro device with bio-sensors that can detect the deadly Ebola virus.
SUTD researchers developed new methods to create microfluidic devices with fluoropolymers
Researchers from SUTD developed a new rapid prototyping technique for fluoropolymer microfluidic device.
SUTD researchers developed customizable microfluidic nozzles for generating complex emulsions
Researchers from SUTD developed customizable microfluidic nozzles using the modules of 3D printed fittings and fluidic units.
More Microfluidic Device News and Microfluidic Device Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.