Nav: Home

Number of known black holes expected to double in two years with new detection method

December 15, 2016

Researchers from the University of Waterloo have developed a method that will detect roughly 10 black holes per year, doubling the number currently known within two years, and it will likely unlock the history of black holes in a little more than a decade.

Avery Broderick, a professor in the Department of Physics and Astronomy at the University of Waterloo, and Mansour Karami, a PhD student also from the Faculty of Science, worked with colleagues in the United States and Iran to come up with the method that has implications for the emerging field of gravitational wave astronomy and the way in which we search for black holes and other dark objects in space. It was published this week in The Astrophysical Journal.

"Within the next 10 years, there will be sufficient accumulated data on enough black holes that researchers can statistically analyze their properties as a population," said Broderick, also an associate faculty member at the Perimeter Institute for Theoretical Physics. "This information will allow us to study stellar mass black holes at various stages that often extend billions of years."

Black holes absorb all light and matter and emit zero radiation, making them impossible to image, let alone detect against the black background of space. Although very little is known about the inner workings of black holes, we do know they play an integral part in the lifecycle of stars and regulate the growth of galaxies. The first direct proof of their existence was announced earlier this year by the Laser Interferometer Gravitational-Wave Observatory (LIGO) when it detected gravitational waves from the collision of two black holes merging into one.

"We don't yet know how rare these events are and how many black holes are generally distributed across the galaxy," said Broderick. "For the first time we'll be placing all the amazing dynamical physics that LIGO sees into a larger astronomical context."

Broderick and his colleagues propose a bolder approach to detecting and studying black holes, not as single entities, but in large numbers as a system by combining two standard astrophysical tools in use today: microlensing and radio wave interferometry.

Gravitational microlensing occurs when a dark object such as a black hole passes between us and another light source, such as a star. The star's light bends around the object's gravitational field to reach Earth, making the background star appear much brighter, not darker as in an eclipse. Even the largest telescopes that observe microlensing events in visible light have a limited resolution, telling astronomers very little about the object that passed by. Instead of using visible light, Broderick and his team propose using radio waves to take multiple snapshots of the microlensing event in real time.

"When you look at the same event using a radio telescope - interferometry - you can actually resolve more than one image. That's what gives us the power to extract all kinds of parameters, like the object's mass, distance and velocity," said Karami, a doctoral student in astrophysics at Waterloo.

Taking a series of radio images over time and turning them into a movie of the event will allow them to extract another level of information about the black hole itself.
-end-
A Natural Sciences and Engineering Research Council Discovery Grant partially funded the project. Co-authors on the paper include Sohrab Rahvar of the Perimeter Institute for Theoretical Physics and the Sharif University of Technology in Iran and Mark Reid of the Harvard-Smithsonian Center for Astrophysics.

University of Waterloo

Related Black Hole Articles:

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.
How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.
Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.
Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.
Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.